The Effects of Capillary Transit Time Heterogeneity (CTH) on the Cerebral Uptake of Glucose and Glucose Analogs: Application to FDG and Comparison to Oxygen Uptake.

Abstract:

:Glucose is the brain's principal source of ATP, but the extent to which cerebral glucose consumption (CMRglc) is coupled with its oxygen consumption (CMRO2) remains unclear. Measurements of the brain's oxygen-glucose index OGI = CMRO2/CMRglc suggest that its oxygen uptake largely suffices for oxidative phosphorylation. Nevertheless, during functional activation and in some disease states, brain tissue seemingly produces lactate although cerebral blood flow (CBF) delivers sufficient oxygen, so-called aerobic glycolysis. OGI measurements, in turn, are method-dependent in that estimates based on glucose analog uptake depend on the so-called lumped constant (LC) to arrive at CMRglc. Capillary transit time heterogeneity (CTH), which is believed to change during functional activation and in some disease states, affects the extraction efficacy of oxygen from blood. We developed a three-compartment model of glucose extraction to examine whether CTH also affects glucose extraction into brain tissue. We then combined this model with our previous model of oxygen extraction to examine whether differential glucose and oxygen extraction might favor non-oxidative glucose metabolism under certain conditions. Our model predicts that glucose uptake is largely unaffected by changes in its plasma concentration, while changes in CBF and CTH affect glucose and oxygen uptake to different extents. Accordingly, functional hyperemia facilitates glucose uptake more than oxygen uptake, favoring aerobic glycolysis during enhanced energy demands. Applying our model to glucose analogs, we observe that LC depends on physiological state, with a risk of overestimating relative increases in CMRglc during functional activation by as much as 50%.

journal_name

Front Comput Neurosci

authors

Angleys H,Jespersen SN,Østergaard L

doi

10.3389/fncom.2016.00103

subject

Has Abstract

pub_date

2016-10-13 00:00:00

pages

103

issn

1662-5188

journal_volume

10

pub_type

杂志文章
  • A Phenomenological Model of the Electrically Stimulated Auditory Nerve Fiber: Temporal and Biphasic Response Properties.

    abstract::We present a phenomenological model of electrically stimulated auditory nerve fibers (ANFs). The model reproduces the probabilistic and temporal properties of the ANF response to both monophasic and biphasic stimuli, in isolation. The main contribution of the model lies in its ability to reproduce statistics of the AN...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00008

    authors: Horne CD,Sumner CJ,Seeber BU

    更新日期:2016-02-08 00:00:00

  • Neural Coding With Bursts-Current State and Future Perspectives.

    abstract::Neuronal action potentials or spikes provide a long-range, noise-resistant means of communication between neurons. As point processes single spikes contain little information in themselves, i.e., outside the context of spikes from other neurons. Moreover, they may fail to cross a synapse. A burst, which consists of a ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncom.2018.00048

    authors: Zeldenrust F,Wadman WJ,Englitz B

    更新日期:2018-07-06 00:00:00

  • Synaptic encoding of temporal contiguity.

    abstract::Often we need to perform tasks in an environment that changes stochastically. In these situations it is important to learn the statistics of sequences of events in order to predict the future and the outcome of our actions. The statistical description of many of these sequences can be reduced to the set of probabiliti...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00032

    authors: Ostojic S,Fusi S

    更新日期:2013-04-12 00:00:00

  • Spectral Entropy Based Neuronal Network Synchronization Analysis Based on Microelectrode Array Measurements.

    abstract::Synchrony and asynchrony are essential aspects of the functioning of interconnected neuronal cells and networks. New information on neuronal synchronization can be expected to aid in understanding these systems. Synchronization provides insight in the functional connectivity and the spatial distribution of the informa...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00112

    authors: Kapucu FE,Välkki I,Mikkonen JE,Leone C,Lenk K,Tanskanen JM,Hyttinen JA

    更新日期:2016-10-18 00:00:00

  • Stochastic Resonance Based Visual Perception Using Spiking Neural Networks.

    abstract::Our aim is to propose an efficient algorithm for enhancing the contrast of dark images based on the principle of stochastic resonance in a global feedback spiking network of integrate-and-fire neurons. By linear approximation and direct simulation, we disclose the dependence of the peak signal-to-noise ratio on the sp...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00024

    authors: Fu Y,Kang Y,Chen G

    更新日期:2020-05-15 00:00:00

  • Conscious Multisensory Integration: Introducing a Universal Contextual Field in Biological and Deep Artificial Neural Networks.

    abstract::Conscious awareness plays a major role in human cognition and adaptive behavior, though its function in multisensory integration is not yet fully understood, hence, questions remain: How does the brain integrate the incoming multisensory signals with respect to different external environments? How are the roles of the...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00015

    authors: Adeel A

    更新日期:2020-05-19 00:00:00

  • Estimating neuronal connectivity from axonal and dendritic density fields.

    abstract::Neurons innervate space by extending axonal and dendritic arborizations. When axons and dendrites come in close proximity of each other, synapses between neurons can be formed. Neurons vary greatly in their morphologies and synaptic connections with other neurons. The size and shape of the arborizations determine the ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00160

    authors: van Pelt J,van Ooyen A

    更新日期:2013-11-25 00:00:00

  • Fast convergence of learning requires plasticity between inferior olive and deep cerebellar nuclei in a manipulation task: a closed-loop robotic simulation.

    abstract::The cerebellum is known to play a critical role in learning relevant patterns of activity for adaptive motor control, but the underlying network mechanisms are only partly understood. The classical long-term synaptic plasticity between parallel fibers (PFs) and Purkinje cells (PCs), which is driven by the inferior oli...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncom.2014.00097

    authors: Luque NR,Garrido JA,Carrillo RR,D'Angelo E,Ros E

    更新日期:2014-08-15 00:00:00

  • Analysis of Nociceptive Information Encoded in the Temporal Discharge Patterns of Cutaneous C-Fibers.

    abstract::The generation of pain signals from primary afferent neurons is explained by a labeled-line code. However, this notion cannot apply in a simple way to cutaneous C-fibers, which carry signals from a variety of receptors that respond to various stimuli including agonist chemicals. To represent the discharge patterns of ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00118

    authors: Cho K,Jang JH,Kim SP,Lee SH,Chung SC,Kim IY,Jang DP,Jung SJ

    更新日期:2016-11-18 00:00:00

  • A simple transfer function for nonlinear dendritic integration.

    abstract::Relatively recent advances in patch clamp recordings and iontophoresis have enabled unprecedented study of neuronal post-synaptic integration ("dendritic integration"). Findings support a separate layer of integration in the dendritic branches before potentials reach the cell's soma. While integration between branches...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00098

    authors: Singh MF,Zald DH

    更新日期:2015-08-10 00:00:00

  • Optimization of Real-Time EEG Artifact Removal and Emotion Estimation for Human-Robot Interaction Applications.

    abstract::Affective human-robot interaction requires lightweight software and cheap wearable devices that could further this field. However, the estimation of emotions in real-time poses a problem that has not yet been optimized. An optimization is proposed for the emotion estimation methodology including artifact removal, feat...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2019.00080

    authors: Val-Calvo M,Álvarez-Sánchez JR,Ferrández-Vicente JM,Fernández E

    更新日期:2019-11-26 00:00:00

  • Steering the Volume of Tissue Activated With a Directional Deep Brain Stimulation Lead in the Globus Pallidus Pars Interna: A Modeling Study With Heterogeneous Tissue Properties.

    abstract::Objective: To study the effect of directional deep brain stimulation (DBS) electrode configuration and vertical electrode spacing on the volume of tissue activated (VTA) in the globus pallidus, pars interna (GPi). Background: Directional DBS leads may allow clinicians to precisely direct current fields to different fu...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.561180

    authors: Zhang S,Tagliati M,Pouratian N,Cheeran B,Ross E,Pereira E

    更新日期:2020-09-25 00:00:00

  • Comparative Analysis of Behavioral Models for Adaptive Learning in Changing Environments.

    abstract::Probabilistic models of decision making under various forms of uncertainty have been applied in recent years to numerous behavioral and model-based fMRI studies. These studies were highly successful in enabling a better understanding of behavior and delineating the functional properties of brain areas involved in deci...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00033

    authors: Marković D,Kiebel SJ

    更新日期:2016-04-20 00:00:00

  • Modeling spontaneous activity across an excitable epithelium: Support for a coordination scenario of early neural evolution.

    abstract::Internal coordination models hold that early nervous systems evolved in the first place to coordinate internal activity at a multicellular level, most notably the use of multicellular contractility as an effector for motility. A recent example of such a model, the skin brain thesis, suggests that excitable epithelia u...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00110

    authors: de Wiljes OO,van Elburg RA,Biehl M,Keijzer FA

    更新日期:2015-09-15 00:00:00

  • A three-dimensional mathematical model for the signal propagation on a neuron's membrane.

    abstract::In order to be able to examine the extracellular potential's influence on network activity and to better understand dipole properties of the extracellular potential, we present and analyze a three-dimensional formulation of the cable equation which facilitates numeric simulations. When the neuron's intra- and extracel...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00094

    authors: Xylouris K,Wittum G

    更新日期:2015-07-17 00:00:00

  • A Neuronal Network Model for Pitch Selectivity and Representation.

    abstract::Pitch is a perceptual correlate of periodicity. Sounds with distinct spectra can elicit the same pitch. Despite the importance of pitch perception, understanding the cellular mechanism of pitch perception is still a major challenge and a mechanistic model of pitch is lacking. A multi-stage neuronal network model is de...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00057

    authors: Huang C,Rinzel J

    更新日期:2016-06-16 00:00:00

  • Effects of Calcium Spikes in the Layer 5 Pyramidal Neuron on Coincidence Detection and Activity Propagation.

    abstract::The role of dendritic spiking mechanisms in neural processing is so far poorly understood. To investigate the role of calcium spikes in the functional properties of the single neuron and recurrent networks, we investigated a three compartment neuron model of the layer 5 pyramidal neuron with calcium dynamics in the di...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00076

    authors: Chua Y,Morrison A

    更新日期:2016-07-22 00:00:00

  • Optimizing Clinical Assessments in Parkinson's Disease Through the Use of Wearable Sensors and Data Driven Modeling.

    abstract::The emergence of motion sensors as a tool that provides objective motor performance data on individuals afflicted with Parkinson's disease offers an opportunity to expand the horizon of clinical care for this neurodegenerative condition. Subjective clinical scales and patient based motor diaries have limited clinometr...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncom.2018.00072

    authors: Ramdhani RA,Khojandi A,Shylo O,Kopell BH

    更新日期:2018-09-11 00:00:00

  • Stability constraints on large-scale structural brain networks.

    abstract::Stability is an important dynamical property of complex systems and underpins a broad range of coherent self-organized behavior. Based on evidence that some neurological disorders correspond to linear instabilities, we hypothesize that stability constrains the brain's electrical activity and influences its structure a...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00031

    authors: Gray RT,Robinson PA

    更新日期:2013-04-12 00:00:00

  • Multimodal Neural Network for Rapid Serial Visual Presentation Brain Computer Interface.

    abstract::Brain computer interfaces allow users to preform various tasks using only the electrical activity of the brain. BCI applications often present the user a set of stimuli and record the corresponding electrical response. The BCI algorithm will then have to decode the acquired brain response and perform the desired task....

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00130

    authors: Manor R,Mishali L,Geva AB

    更新日期:2016-12-20 00:00:00

  • Effects of Adaptation on Discrimination of Whisker Deflection Velocity and Angular Direction in a Model of the Barrel Cortex.

    abstract::Two important stimulus features represented within the rodent barrel cortex are velocity and angular direction of whisker deflection. Each cortical barrel receives information from thalamocortical (TC) cells that relay information from a single whisker, and TC input is decoded by barrel regular-spiking (RS) cells thro...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2018.00045

    authors: Patel MJ

    更新日期:2018-06-12 00:00:00

  • Density Visualization Pipeline: A Tool for Cellular and Network Density Visualization and Analysis.

    abstract::Neuron classification is an important component in analyzing network structure and quantifying the effect of neuron topology on signal processing. Current quantification and classification approaches rely on morphology projection onto lower-dimensional spaces. In this paper a 3D visualization and quantification tool i...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00042

    authors: Grein S,Qi G,Queisser G

    更新日期:2020-06-26 00:00:00

  • Tracking cortical entrainment in neural activity: auditory processes in human temporal cortex.

    abstract::A primary objective for cognitive neuroscience is to identify how features of the sensory environment are encoded in neural activity. Current auditory models of loudness perception can be used to make detailed predictions about the neural activity of the cortex as an individual listens to speech. We used two such mode...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00005

    authors: Thwaites A,Nimmo-Smith I,Fonteneau E,Patterson RD,Buttery P,Marslen-Wilson WD

    更新日期:2015-02-10 00:00:00

  • Bursting Neurons in the Hippocampal Formation Encode Features of LFP Rhythms.

    abstract::Burst spike patterns are common in regions of the hippocampal formation such as the subiculum and medial entorhinal cortex (MEC). Neurons in these areas are immersed in extracellular electrical potential fluctuations often recorded as the local field potential (LFP). LFP rhythms within different frequency bands are li...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00133

    authors: Constantinou M,Gonzalo Cogno S,Elijah DH,Kropff E,Gigg J,Samengo I,Montemurro MA

    更新日期:2016-12-26 00:00:00

  • Disinhibition-Induced Delayed Onset of Epileptic Spike-Wave Discharges in a Five Variable Model of Cortex and Thalamus.

    abstract::Based on a modified neural field network model composed of cortex and thalamus, we here propose a computational framework to investigate the onset control of absence seizure, which is characterized by the spike-wave discharges. Firstly, we briefly demonstrate the existence of various transition types in Taylor's model...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00028

    authors: Liu S,Wang Q,Fan D

    更新日期:2016-04-05 00:00:00

  • Population coding of visual space: comparison of spatial representations in dorsal and ventral pathways.

    abstract::Although the representation of space is as fundamental to visual processing as the representation of shape, it has received relatively little attention from neurophysiological investigations. In this study we characterize representations of space within visual cortex, and examine how they differ in a first direct comp...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2010.00159

    authors: Sereno AB,Lehky SR

    更新日期:2011-02-01 00:00:00

  • Empirical Evaluation of Voluntarily Activatable Muscle Synergies.

    abstract::The muscle synergy hypothesis assumes that individual muscle synergies are independent of each other and voluntarily controllable. However, this assumption has not been empirically tested. This study tested if human subjects can voluntarily activate individual muscle synergies extracted by non-negative matrix factoriz...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2017.00082

    authors: Togo S,Imamizu H

    更新日期:2017-09-06 00:00:00

  • Impact of Physical Obstacles on the Structural and Effective Connectivity of in silico Neuronal Circuits.

    abstract::Scaffolds and patterned substrates are among the most successful strategies to dictate the connectivity between neurons in culture. Here, we used numerical simulations to investigate the capacity of physical obstacles placed on a flat substrate to shape structural connectivity, and in turn collective dynamics and effe...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00077

    authors: Ludl AA,Soriano J

    更新日期:2020-08-31 00:00:00

  • A model-based approach to predict muscle synergies using optimization: application to feedback control.

    abstract::This paper presents a new model-based method to define muscle synergies. Unlike the conventional factorization approach, which extracts synergies from electromyographic data, the proposed method employs a biomechanical model and formally defines the synergies as the solution of an optimal control problem. As a result,...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00121

    authors: Sharif Razavian R,Mehrabi N,McPhee J

    更新日期:2015-10-06 00:00:00

  • A Role for Electrotonic Coupling Between Cortical Pyramidal Cells.

    abstract::Many brain regions communicate information through synchronized network activity. Electrical coupling among the dendrites of interneurons in the cortex has been implicated in forming and sustaining such activity in the cortex. Evidence for the existence of electrical coupling among cortical pyramidal cells, however, h...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2019.00033

    authors: Crodelle J,Zhou D,Kovačič G,Cai D

    更新日期:2019-05-28 00:00:00