Population coding of visual space: comparison of spatial representations in dorsal and ventral pathways.

Abstract:

:Although the representation of space is as fundamental to visual processing as the representation of shape, it has received relatively little attention from neurophysiological investigations. In this study we characterize representations of space within visual cortex, and examine how they differ in a first direct comparison between dorsal and ventral subdivisions of the visual pathways. Neural activities were recorded in anterior inferotemporal cortex (AIT) and lateral intraparietal cortex (LIP) of awake behaving monkeys, structures associated with the ventral and dorsal visual pathways respectively, as a stimulus was presented at different locations within the visual field. In spatially selective cells, we find greater modulation of cell responses in LIP with changes in stimulus position. Further, using a novel population-based statistical approach (namely, multidimensional scaling), we recover the spatial map implicit within activities of neural populations, allowing us to quantitatively compare the geometry of neural space with physical space. We show that a population of spatially selective LIP neurons, despite having large receptive fields, is able to almost perfectly reconstruct stimulus locations within a low-dimensional representation. In contrast, a population of AIT neurons, despite each cell being spatially selective, provide less accurate low-dimensional reconstructions of stimulus locations. They produce instead only a topologically (categorically) correct rendition of space, which nevertheless might be critical for object and scene recognition. Furthermore, we found that the spatial representation recovered from population activity shows greater translation invariance in LIP than in AIT. We suggest that LIP spatial representations may be dimensionally isomorphic with 3D physical space, while in AIT spatial representations may reflect a more categorical representation of space (e.g., "next to" or "above").

journal_name

Front Comput Neurosci

authors

Sereno AB,Lehky SR

doi

10.3389/fncom.2010.00159

subject

Has Abstract

pub_date

2011-02-01 00:00:00

pages

159

issn

1662-5188

journal_volume

4

pub_type

杂志文章
  • Spatiotemporal imaging of complexity.

    abstract::What are the functional neuroimaging measurements required for more fully characterizing the events and locations of neocortical activity? A prime assumption has been that modulation of cortical activity will inevitably be reflected in changes in energy utilization (for the most part) changes of glucose and oxygen con...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2012.00101

    authors: Robinson SE,Mandell AJ,Coppola R

    更新日期:2013-01-24 00:00:00

  • Striatal Network Models of Huntington's Disease Dysfunction Phenotypes.

    abstract::We present a network model of striatum, which generates "winnerless" dynamics typical for a network of sparse, unidirectionally connected inhibitory units. We observe that these dynamics, while interesting and a good match to normal striatal electrophysiological recordings, are fragile. Specifically, we find that rand...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2017.00070

    authors: Zheng P,Kozloski J

    更新日期:2017-07-27 00:00:00

  • Neuronal Degeneration Impairs Rhythms Between Connected Microcircuits.

    abstract::Synchronization of neural activity across brain regions is critical to processes that include perception, learning, and memory. After traumatic brain injury (TBI), neuronal degeneration is one possible effect and can alter communication between neural circuits. Consequently, synchronization between neurons may change ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00018

    authors: Schumm SN,Gabrieli D,Meaney DF

    更新日期:2020-03-03 00:00:00

  • A Glutamatergic Spine Model to Enable Multi-Scale Modeling of Nonlinear Calcium Dynamics.

    abstract::In synapses, calcium is required for modulating synaptic transmission, plasticity, synaptogenesis, and synaptic pruning. The regulation of calcium dynamics within neurons involves cellular mechanisms such as synaptically activated channels and pumps, calcium buffers, and calcium sequestrating organelles. Many experime...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2018.00058

    authors: Hu E,Mergenthal A,Bingham CS,Song D,Bouteiller JM,Berger TW

    更新日期:2018-07-27 00:00:00

  • Deep networks for motor control functions.

    abstract::The motor system generates time-varying commands to move our limbs and body. Conventional descriptions of motor control and learning rely on dynamical representations of our body's state (forward and inverse models), and control policies that must be integrated forward to generate feedforward time-varying commands; th...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00032

    authors: Berniker M,Kording KP

    更新日期:2015-03-19 00:00:00

  • Spike train auto-structure impacts post-synaptic firing and timing-based plasticity.

    abstract::Cortical neurons are typically driven by several thousand synapses. The precise spatiotemporal pattern formed by these inputs can modulate the response of a post-synaptic cell. In this work, we explore how the temporal structure of pre-synaptic inhibitory and excitatory inputs impact the post-synaptic firing of a cond...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00060

    authors: Scheller B,Castellano M,Vicente R,Pipa G

    更新日期:2011-12-16 00:00:00

  • Architectural constraints are a major factor reducing path integration accuracy in the rat head direction cell system.

    abstract::Head direction cells fire to signal the direction in which an animal's head is pointing. They are able to track head direction using only internally-derived information (path integration)In this simulation study we investigate the factors that affect path integration accuracy. Specifically, two major limiting factors ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00010

    authors: Page HJ,Walters D,Stringer SM

    更新日期:2015-02-06 00:00:00

  • Neural circuits for peristaltic wave propagation in crawling Drosophila larvae: analysis and modeling.

    abstract::Drosophila larvae crawl by peristaltic waves of muscle contractions, which propagate along the animal body and involve the simultaneous contraction of the left and right side of each segment. Coordinated propagation of contraction does not require sensory input, suggesting that movement is generated by a central patte...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00024

    authors: Gjorgjieva J,Berni J,Evers JF,Eglen SJ

    更新日期:2013-04-04 00:00:00

  • Quantized response times are a signature of a neuronal bottleneck in decision.

    abstract::The histograms of response times of optimal YES/NO decisions that are computed from a single sensory Poisson neuron are highly structured. In particular, response times in NO decisions are quantized to a small set of times, while response times in YES decisions have a multimodal structure. Both the times of NO decisio...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2014.00042

    authors: Perona P

    更新日期:2014-04-11 00:00:00

  • Stochastic Resonance Based Visual Perception Using Spiking Neural Networks.

    abstract::Our aim is to propose an efficient algorithm for enhancing the contrast of dark images based on the principle of stochastic resonance in a global feedback spiking network of integrate-and-fire neurons. By linear approximation and direct simulation, we disclose the dependence of the peak signal-to-noise ratio on the sp...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00024

    authors: Fu Y,Kang Y,Chen G

    更新日期:2020-05-15 00:00:00

  • Disinhibition-Induced Delayed Onset of Epileptic Spike-Wave Discharges in a Five Variable Model of Cortex and Thalamus.

    abstract::Based on a modified neural field network model composed of cortex and thalamus, we here propose a computational framework to investigate the onset control of absence seizure, which is characterized by the spike-wave discharges. Firstly, we briefly demonstrate the existence of various transition types in Taylor's model...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00028

    authors: Liu S,Wang Q,Fan D

    更新日期:2016-04-05 00:00:00

  • Sex Differences in Fiber Connection between the Striatum and Subcortical and Cortical Regions.

    abstract::The striatum is an important subcortical structure with extensive connections to other regions of the brain. These connections are believed to play important roles in behaviors such as reward-related processes and impulse control, which show significant sex differences. However, little is known about sex differences i...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00100

    authors: Lei X,Han Z,Chen C,Bai L,Xue G,Dong Q

    更新日期:2016-09-23 00:00:00

  • Layer-Dependent Attentional Processing by Top-down Signals in a Visual Cortical Microcircuit Model.

    abstract::A vast amount of information about the external world continuously flows into the brain, whereas its capacity to process such information is limited. Attention enables the brain to allocate its resources of information processing to selected sensory inputs for reducing its computational load, and effects of attention ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00031

    authors: Wagatsuma N,Potjans TC,Diesmann M,Fukai T

    更新日期:2011-07-08 00:00:00

  • Modeling spontaneous activity across an excitable epithelium: Support for a coordination scenario of early neural evolution.

    abstract::Internal coordination models hold that early nervous systems evolved in the first place to coordinate internal activity at a multicellular level, most notably the use of multicellular contractility as an effector for motility. A recent example of such a model, the skin brain thesis, suggests that excitable epithelia u...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00110

    authors: de Wiljes OO,van Elburg RA,Biehl M,Keijzer FA

    更新日期:2015-09-15 00:00:00

  • Letting the daylight in: Reviewing the reviewers and other ways to maximize transparency in science.

    abstract::With the emergence of online publishing, opportunities to maximize transparency of scientific research have grown considerably. However, these possibilities are still only marginally used. We argue for the implementation of (1) peer-reviewed peer review, (2) transparent editorial hierarchies, and (3) online data publi...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2012.00020

    authors: Wicherts JM,Kievit RA,Bakker M,Borsboom D

    更新日期:2012-04-03 00:00:00

  • Bayesian Inference of Synaptic Quantal Parameters from Correlated Vesicle Release.

    abstract::Synaptic transmission is both history-dependent and stochastic, resulting in varying responses to presentations of the same presynaptic stimulus. This complicates attempts to infer synaptic parameters and has led to the proposal of a number of different strategies for their quantification. Recently Bayesian approaches...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00116

    authors: Bird AD,Wall MJ,Richardson MJ

    更新日期:2016-11-25 00:00:00

  • Steering the Volume of Tissue Activated With a Directional Deep Brain Stimulation Lead in the Globus Pallidus Pars Interna: A Modeling Study With Heterogeneous Tissue Properties.

    abstract::Objective: To study the effect of directional deep brain stimulation (DBS) electrode configuration and vertical electrode spacing on the volume of tissue activated (VTA) in the globus pallidus, pars interna (GPi). Background: Directional DBS leads may allow clinicians to precisely direct current fields to different fu...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.561180

    authors: Zhang S,Tagliati M,Pouratian N,Cheeran B,Ross E,Pereira E

    更新日期:2020-09-25 00:00:00

  • Learning modular policies for robotics.

    abstract::A promising idea for scaling robot learning to more complex tasks is to use elemental behaviors as building blocks to compose more complex behavior. Ideally, such building blocks are used in combination with a learning algorithm that is able to learn to select, adapt, sequence and co-activate the building blocks. Whil...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncom.2014.00062

    authors: Neumann G,Daniel C,Paraschos A,Kupcsik A,Peters J

    更新日期:2014-06-11 00:00:00

  • On the dynamics of cortical development: synchrony and synaptic self-organization.

    abstract::We describe a model for cortical development that resolves long-standing difficulties of earlier models. It is proposed that, during embryonic development, synchronous firing of neurons and their competition for limited metabolic resources leads to selection of an array of neurons with ultra-small-world characteristic...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00004

    authors: Wright JJ,Bourke PD

    更新日期:2013-02-15 00:00:00

  • A stimulus-dependent spike threshold is an optimal neural coder.

    abstract::A neural code based on sequences of spikes can consume a significant portion of the brain's energy budget. Thus, energy considerations would dictate that spiking activity be kept as low as possible. However, a high spike-rate improves the coding and representation of signals in spike trains, particularly in sensory sy...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00061

    authors: Jones DL,Johnson EC,Ratnam R

    更新日期:2015-06-02 00:00:00

  • A model of food reward learning with dynamic reward exposure.

    abstract::The process of conditioning via reward learning is highly relevant to the study of food choice and obesity. Learning is itself shaped by environmental exposure, with the potential for such exposures to vary substantially across individuals and across place and time. In this paper, we use computational techniques to ex...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2012.00082

    authors: Hammond RA,Ornstein JT,Fellows LK,Dubé L,Levitan R,Dagher A

    更新日期:2012-10-11 00:00:00

  • Non-invasive Decoding of the Motoneurons: A Guided Source Separation Method Based on Convolution Kernel Compensation With Clustered Initial Points.

    abstract::Despite the progress in understanding of neural codes, the studies of the cortico-muscular coupling still largely rely on interferential electromyographic (EMG) signal or its rectification for the assessment of motor neuron pool behavior. This assessment is non-trivial and should be used with precaution. Direct analys...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2019.00014

    authors: Mohebian MR,Marateb HR,Karimimehr S,Mañanas MA,Kranjec J,Holobar A

    更新日期:2019-04-02 00:00:00

  • Model-Based Comparison of Deep Brain Stimulation Array Functionality with Varying Number of Radial Electrodes and Machine Learning Feature Sets.

    abstract::Deep brain stimulation (DBS) leads with radially distributed electrodes have potential to improve clinical outcomes through more selective targeting of pathways and networks within the brain. However, increasing the number of electrodes on clinical DBS leads by replacing conventional cylindrical shell electrodes with ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00058

    authors: Teplitzky BA,Zitella LM,Xiao Y,Johnson MD

    更新日期:2016-06-10 00:00:00

  • Dopamine-signaled reward predictions generated by competitive excitation and inhibition in a spiking neural network model.

    abstract::Dopaminergic neurons in the mammalian substantia nigra display characteristic phasic responses to stimuli which reliably predict the receipt of primary rewards. These responses have been suggested to encode reward prediction-errors similar to those used in reinforcement learning. Here, we propose a model of dopaminerg...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00021

    authors: Chorley P,Seth AK

    更新日期:2011-05-18 00:00:00

  • Short-Term Facilitation may Stabilize Parametric Working Memory Trace.

    abstract::Networks with continuous set of attractors are considered to be a paradigmatic model for parametric working memory (WM), but require fine tuning of connections and are thus structurally unstable. Here we analyzed the network with ring attractor, where connections are not perfectly tuned and the activity state therefor...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00040

    authors: Itskov V,Hansel D,Tsodyks M

    更新日期:2011-10-24 00:00:00

  • Simultaneous stability and sensitivity in model cortical networks is achieved through anti-correlations between the in- and out-degree of connectivity.

    abstract::Neuronal networks in rodent barrel cortex are characterized by stable low baseline firing rates. However, they are sensitive to the action potentials of single neurons as suggested by recent single-cell stimulation experiments that reported quantifiable behavioral responses in response to short spike trains elicited i...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00156

    authors: Vasquez JC,Houweling AR,Tiesinga P

    更新日期:2013-11-07 00:00:00

  • Learning Generative State Space Models for Active Inference.

    abstract::In this paper we investigate the active inference framework as a means to enable autonomous behavior in artificial agents. Active inference is a theoretical framework underpinning the way organisms act and observe in the real world. In active inference, agents act in order to minimize their so called free energy, or p...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.574372

    authors: Çatal O,Wauthier S,De Boom C,Verbelen T,Dhoedt B

    更新日期:2020-11-16 00:00:00

  • Synaptic bouton properties are tuned to best fit the prevailing firing pattern.

    abstract::The morphology of presynaptic specializations can vary greatly ranging from classical single-release-site boutons in the central nervous system to boutons of various sizes harboring multiple vesicle release sites. Multi-release-site boutons can be found in several neural contexts, for example at the neuromuscular junc...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2014.00101

    authors: Knodel MM,Geiger R,Ge L,Bucher D,Grillo A,Wittum G,Schuster CM,Queisser G

    更新日期:2014-09-09 00:00:00

  • Correlation-based analysis and generation of multiple spike trains using hawkes models with an exogenous input.

    abstract::The correlation structure of neural activity is believed to play a major role in the encoding and possibly the decoding of information in neural populations. Recently, several methods were developed for exactly controlling the correlation structure of multi-channel synthetic spike trains (Brette, 2009; Krumin and Shoh...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2010.00147

    authors: Krumin M,Reutsky I,Shoham S

    更新日期:2010-11-19 00:00:00

  • Optimizing Clinical Assessments in Parkinson's Disease Through the Use of Wearable Sensors and Data Driven Modeling.

    abstract::The emergence of motion sensors as a tool that provides objective motor performance data on individuals afflicted with Parkinson's disease offers an opportunity to expand the horizon of clinical care for this neurodegenerative condition. Subjective clinical scales and patient based motor diaries have limited clinometr...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncom.2018.00072

    authors: Ramdhani RA,Khojandi A,Shylo O,Kopell BH

    更新日期:2018-09-11 00:00:00