Bayesian Inference of Synaptic Quantal Parameters from Correlated Vesicle Release.

Abstract:

:Synaptic transmission is both history-dependent and stochastic, resulting in varying responses to presentations of the same presynaptic stimulus. This complicates attempts to infer synaptic parameters and has led to the proposal of a number of different strategies for their quantification. Recently Bayesian approaches have been applied to make more efficient use of the data collected in paired intracellular recordings. Methods have been developed that either provide a complete model of the distribution of amplitudes for isolated responses or approximate the amplitude distributions of a train of post-synaptic potentials, with correct short-term synaptic dynamics but neglecting correlations. In both cases the methods provided significantly improved inference of model parameters as compared to existing mean-variance fitting approaches. However, for synapses with high release probability, low vesicle number or relatively low restock rate and for data in which only one or few repeats of the same pattern are available, correlations between serial events can allow for the extraction of significantly more information from experiment: a more complete Bayesian approach would take this into account also. This has not been possible previously because of the technical difficulty in calculating the likelihood of amplitudes seen in correlated post-synaptic potential trains; however, recent theoretical advances have now rendered the likelihood calculation tractable for a broad class of synaptic dynamics models. Here we present a compact mathematical form for the likelihood in terms of a matrix product and demonstrate how marginals of the posterior provide information on covariance of parameter distributions. The associated computer code for Bayesian parameter inference for a variety of models of synaptic dynamics is provided in the Supplementary Material allowing for quantal and dynamical parameters to be readily inferred from experimental data sets.

journal_name

Front Comput Neurosci

authors

Bird AD,Wall MJ,Richardson MJ

doi

10.3389/fncom.2016.00116

subject

Has Abstract

pub_date

2016-11-25 00:00:00

pages

116

issn

1662-5188

journal_volume

10

pub_type

杂志文章
  • Information diversity in structure and dynamics of simulated neuronal networks.

    abstract::Neuronal networks exhibit a wide diversity of structures, which contributes to the diversity of the dynamics therein. The presented work applies an information theoretic framework to simultaneously analyze structure and dynamics in neuronal networks. Information diversity within the structure and dynamics of a neurona...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00026

    authors: Mäki-Marttunen T,Aćimović J,Nykter M,Kesseli J,Ruohonen K,Yli-Harja O,Linne ML

    更新日期:2011-06-01 00:00:00

  • Impact of Physical Obstacles on the Structural and Effective Connectivity of in silico Neuronal Circuits.

    abstract::Scaffolds and patterned substrates are among the most successful strategies to dictate the connectivity between neurons in culture. Here, we used numerical simulations to investigate the capacity of physical obstacles placed on a flat substrate to shape structural connectivity, and in turn collective dynamics and effe...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00077

    authors: Ludl AA,Soriano J

    更新日期:2020-08-31 00:00:00

  • Is attentional blink a byproduct of neocortical attractors?

    abstract::This study proposes a computational model for attentional blink or "blink of the mind," a phenomenon where a human subject misses perception of a later expected visual pattern as two expected visual patterns are presented less than 500 ms apart. A neocortical patch modeled as an attractor network is stimulated with a ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00013

    authors: Silverstein DN,Lansner A

    更新日期:2011-05-03 00:00:00

  • Visual Cortex Inspired CNN Model for Feature Construction in Text Analysis.

    abstract::Recently, biologically inspired models are gradually proposed to solve the problem in text analysis. Convolutional neural networks (CNN) are hierarchical artificial neural networks, which include a various of multilayer perceptrons. According to biological research, CNN can be improved by bringing in the attention mod...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00064

    authors: Fu H,Niu Z,Zhang C,Ma J,Chen J

    更新日期:2016-07-14 00:00:00

  • Effects of Adaptation on Discrimination of Whisker Deflection Velocity and Angular Direction in a Model of the Barrel Cortex.

    abstract::Two important stimulus features represented within the rodent barrel cortex are velocity and angular direction of whisker deflection. Each cortical barrel receives information from thalamocortical (TC) cells that relay information from a single whisker, and TC input is decoded by barrel regular-spiking (RS) cells thro...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2018.00045

    authors: Patel MJ

    更新日期:2018-06-12 00:00:00

  • Probabilistic inference of short-term synaptic plasticity in neocortical microcircuits.

    abstract::Short-term synaptic plasticity is highly diverse across brain area, cortical layer, cell type, and developmental stage. Since short-term plasticity (STP) strongly shapes neural dynamics, this diversity suggests a specific and essential role in neural information processing. Therefore, a correct characterization of sho...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00075

    authors: Costa RP,Sjöström PJ,van Rossum MC

    更新日期:2013-06-06 00:00:00

  • Causal Role of Thalamic Interneurons in Brain State Transitions: A Study Using a Neural Mass Model Implementing Synaptic Kinetics.

    abstract::Experimental studies on the Lateral Geniculate Nucleus (LGN) of mammals and rodents show that the inhibitory interneurons (IN) receive around 47.1% of their afferents from the retinal spiking neurons, and constitute around 20-25% of the LGN cell population. However, there is a definite gap in knowledge about the role ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00115

    authors: Bhattacharya BS,Bond TP,O'Hare L,Turner D,Durrant SJ

    更新日期:2016-11-16 00:00:00

  • Hyperpolarization-Activated Current Induces Period-Doubling Cascades and Chaos in a Cold Thermoreceptor Model.

    abstract::In this article, we describe and analyze the chaotic behavior of a conductance-based neuronal bursting model. This is a model with a reduced number of variables, yet it retains biophysical plausibility. Inspired by the activity of cold thermoreceptors, the model contains a persistent Sodium current, a Calcium-activate...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2017.00012

    authors: Xu K,Maidana JP,Caviedes M,Quero D,Aguirre P,Orio P

    更新日期:2017-03-10 00:00:00

  • Conscious Multisensory Integration: Introducing a Universal Contextual Field in Biological and Deep Artificial Neural Networks.

    abstract::Conscious awareness plays a major role in human cognition and adaptive behavior, though its function in multisensory integration is not yet fully understood, hence, questions remain: How does the brain integrate the incoming multisensory signals with respect to different external environments? How are the roles of the...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00015

    authors: Adeel A

    更新日期:2020-05-19 00:00:00

  • Causal Inference for Cross-Modal Action Selection: A Computational Study in a Decision Making Framework.

    abstract::Animals try to make sense of sensory information from multiple modalities by categorizing them into perceptions of individual or multiple external objects or internal concepts. For example, the brain constructs sensory, spatial representations of the locations of visual and auditory stimuli in the visual and auditory ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00062

    authors: Daemi M,Harris LR,Crawford JD

    更新日期:2016-06-23 00:00:00

  • A model of food reward learning with dynamic reward exposure.

    abstract::The process of conditioning via reward learning is highly relevant to the study of food choice and obesity. Learning is itself shaped by environmental exposure, with the potential for such exposures to vary substantially across individuals and across place and time. In this paper, we use computational techniques to ex...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2012.00082

    authors: Hammond RA,Ornstein JT,Fellows LK,Dubé L,Levitan R,Dagher A

    更新日期:2012-10-11 00:00:00

  • Unsupervised Domain Adaptation With Optimal Transport in Multi-Site Segmentation of Multiple Sclerosis Lesions From MRI Data.

    abstract::Automatic segmentation of Multiple Sclerosis (MS) lesions from Magnetic Resonance Imaging (MRI) images is essential for clinical assessment and treatment planning of MS. Recent years have seen an increasing use of Convolutional Neural Networks (CNNs) for this task. Although these methods provide accurate segmentation,...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00019

    authors: Ackaouy A,Courty N,Vallée E,Commowick O,Barillot C,Galassi F

    更新日期:2020-03-09 00:00:00

  • MACOP modular architecture with control primitives.

    abstract::Walking, catching a ball and reaching are all tasks in which humans and animals exhibit advanced motor skills. Findings in biological research concerning motor control suggest a modular control hierarchy which combines movement/motor primitives into complex and natural movements. Engineers inspire their research on th...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00099

    authors: Waegeman T,Hermans M,Schrauwen B

    更新日期:2013-07-23 00:00:00

  • Classification of EEG Signals Based on Pattern Recognition Approach.

    abstract::Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a "pattern recognition" approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2017.00103

    authors: Amin HU,Mumtaz W,Subhani AR,Saad MNM,Malik AS

    更新日期:2017-11-21 00:00:00

  • Analysis of Nociceptive Information Encoded in the Temporal Discharge Patterns of Cutaneous C-Fibers.

    abstract::The generation of pain signals from primary afferent neurons is explained by a labeled-line code. However, this notion cannot apply in a simple way to cutaneous C-fibers, which carry signals from a variety of receptors that respond to various stimuli including agonist chemicals. To represent the discharge patterns of ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00118

    authors: Cho K,Jang JH,Kim SP,Lee SH,Chung SC,Kim IY,Jang DP,Jung SJ

    更新日期:2016-11-18 00:00:00

  • Unsupervised Few-Shot Feature Learning via Self-Supervised Training.

    abstract::Learning from limited exemplars (few-shot learning) is a fundamental, unsolved problem that has been laboriously explored in the machine learning community. However, current few-shot learners are mostly supervised and rely heavily on a large amount of labeled examples. Unsupervised learning is a more natural procedure...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00083

    authors: Ji Z,Zou X,Huang T,Wu S

    更新日期:2020-10-14 00:00:00

  • Neural Coding With Bursts-Current State and Future Perspectives.

    abstract::Neuronal action potentials or spikes provide a long-range, noise-resistant means of communication between neurons. As point processes single spikes contain little information in themselves, i.e., outside the context of spikes from other neurons. Moreover, they may fail to cross a synapse. A burst, which consists of a ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncom.2018.00048

    authors: Zeldenrust F,Wadman WJ,Englitz B

    更新日期:2018-07-06 00:00:00

  • Analog Signaling With the "Digital" Molecular Switch CaMKII.

    abstract::Molecular switches, such as the protein kinase CaMKII, play a fundamental role in cell signaling by decoding inputs into either high or low states of activity; because the high activation state can be turned on and persist after the input ceases, these switches have earned a reputation as "digital." Although this on/o...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2018.00092

    authors: Clarke SE

    更新日期:2018-11-22 00:00:00

  • Synaptic encoding of temporal contiguity.

    abstract::Often we need to perform tasks in an environment that changes stochastically. In these situations it is important to learn the statistics of sequences of events in order to predict the future and the outcome of our actions. The statistical description of many of these sequences can be reduced to the set of probabiliti...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00032

    authors: Ostojic S,Fusi S

    更新日期:2013-04-12 00:00:00

  • A Role for Electrotonic Coupling Between Cortical Pyramidal Cells.

    abstract::Many brain regions communicate information through synchronized network activity. Electrical coupling among the dendrites of interneurons in the cortex has been implicated in forming and sustaining such activity in the cortex. Evidence for the existence of electrical coupling among cortical pyramidal cells, however, h...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2019.00033

    authors: Crodelle J,Zhou D,Kovačič G,Cai D

    更新日期:2019-05-28 00:00:00

  • Spike train auto-structure impacts post-synaptic firing and timing-based plasticity.

    abstract::Cortical neurons are typically driven by several thousand synapses. The precise spatiotemporal pattern formed by these inputs can modulate the response of a post-synaptic cell. In this work, we explore how the temporal structure of pre-synaptic inhibitory and excitatory inputs impact the post-synaptic firing of a cond...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00060

    authors: Scheller B,Castellano M,Vicente R,Pipa G

    更新日期:2011-12-16 00:00:00

  • The Effects of Capillary Transit Time Heterogeneity (CTH) on the Cerebral Uptake of Glucose and Glucose Analogs: Application to FDG and Comparison to Oxygen Uptake.

    abstract::Glucose is the brain's principal source of ATP, but the extent to which cerebral glucose consumption (CMRglc) is coupled with its oxygen consumption (CMRO2) remains unclear. Measurements of the brain's oxygen-glucose index OGI = CMRO2/CMRglc suggest that its oxygen uptake largely suffices for oxidative phosphorylation...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00103

    authors: Angleys H,Jespersen SN,Østergaard L

    更新日期:2016-10-13 00:00:00

  • Comparative Analysis of Behavioral Models for Adaptive Learning in Changing Environments.

    abstract::Probabilistic models of decision making under various forms of uncertainty have been applied in recent years to numerous behavioral and model-based fMRI studies. These studies were highly successful in enabling a better understanding of behavior and delineating the functional properties of brain areas involved in deci...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00033

    authors: Marković D,Kiebel SJ

    更新日期:2016-04-20 00:00:00

  • Probabilistic Circuits for Autonomous Learning: A Simulation Study.

    abstract::Modern machine learning is based on powerful algorithms running on digital computing platforms and there is great interest in accelerating the learning process and making it more energy efficient. In this paper we present a fully autonomous probabilistic circuit for fast and efficient learning that makes no use of dig...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00014

    authors: Kaiser J,Faria R,Camsari KY,Datta S

    更新日期:2020-02-25 00:00:00

  • Striatal Network Models of Huntington's Disease Dysfunction Phenotypes.

    abstract::We present a network model of striatum, which generates "winnerless" dynamics typical for a network of sparse, unidirectionally connected inhibitory units. We observe that these dynamics, while interesting and a good match to normal striatal electrophysiological recordings, are fragile. Specifically, we find that rand...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2017.00070

    authors: Zheng P,Kozloski J

    更新日期:2017-07-27 00:00:00

  • Fast convergence of learning requires plasticity between inferior olive and deep cerebellar nuclei in a manipulation task: a closed-loop robotic simulation.

    abstract::The cerebellum is known to play a critical role in learning relevant patterns of activity for adaptive motor control, but the underlying network mechanisms are only partly understood. The classical long-term synaptic plasticity between parallel fibers (PFs) and Purkinje cells (PCs), which is driven by the inferior oli...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncom.2014.00097

    authors: Luque NR,Garrido JA,Carrillo RR,D'Angelo E,Ros E

    更新日期:2014-08-15 00:00:00

  • Dynamical Graph Theory Networks Methods for the Analysis of Sparse Functional Connectivity Networks and for Determining Pinning Observability in Brain Networks.

    abstract::Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2017.00087

    authors: Meyer-Bäse A,Roberts RG,Illan IA,Meyer-Bäse U,Lobbes M,Stadlbauer A,Pinker-Domenig K

    更新日期:2017-10-05 00:00:00

  • Optimizing Clinical Assessments in Parkinson's Disease Through the Use of Wearable Sensors and Data Driven Modeling.

    abstract::The emergence of motion sensors as a tool that provides objective motor performance data on individuals afflicted with Parkinson's disease offers an opportunity to expand the horizon of clinical care for this neurodegenerative condition. Subjective clinical scales and patient based motor diaries have limited clinometr...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncom.2018.00072

    authors: Ramdhani RA,Khojandi A,Shylo O,Kopell BH

    更新日期:2018-09-11 00:00:00

  • Calcium messenger heterogeneity: a possible signal for spike timing-dependent plasticity.

    abstract::Calcium concentrations as well as time courses have been used to model the signaling cascades leading to changes in the strength of synaptic connections. Previous models consider the dendritic spines as uniform compartments regarding calcium signaling. However, calcium concentrations can vary drastically on distances ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2010.00158

    authors: Mihalas S

    更新日期:2011-01-13 00:00:00

  • Examining Brain Morphometry Associated with Self-Esteem in Young Adults Using Multilevel-ROI-Features-Based Classification Method.

    abstract::Purpose: This study is to exam self-esteem related brain morphometry on brain magnetic resonance (MR) images using multilevel-features-based classification method. Method: The multilevel region of interest (ROI) features consist of two types of features: (i) ROI features, which include gray matter volume, white matter...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2017.00037

    authors: Peng B,Lu J,Saxena A,Zhou Z,Zhang T,Wang S,Dai Y

    更新日期:2017-05-22 00:00:00