Information diversity in structure and dynamics of simulated neuronal networks.

Abstract:

:Neuronal networks exhibit a wide diversity of structures, which contributes to the diversity of the dynamics therein. The presented work applies an information theoretic framework to simultaneously analyze structure and dynamics in neuronal networks. Information diversity within the structure and dynamics of a neuronal network is studied using the normalized compression distance. To describe the structure, a scheme for generating distance-dependent networks with identical in-degree distribution but variable strength of dependence on distance is presented. The resulting network structure classes possess differing path length and clustering coefficient distributions. In parallel, comparable realistic neuronal networks are generated with NETMORPH simulator and similar analysis is done on them. To describe the dynamics, network spike trains are simulated using different network structures and their bursting behaviors are analyzed. For the simulation of the network activity the Izhikevich model of spiking neurons is used together with the Tsodyks model of dynamical synapses. We show that the structure of the simulated neuronal networks affects the spontaneous bursting activity when measured with bursting frequency and a set of intraburst measures: the more locally connected networks produce more and longer bursts than the more random networks. The information diversity of the structure of a network is greatest in the most locally connected networks, smallest in random networks, and somewhere in between in the networks between order and disorder. As for the dynamics, the most locally connected networks and some of the in-between networks produce the most complex intraburst spike trains. The same result also holds for sparser of the two considered network densities in the case of full spike trains.

journal_name

Front Comput Neurosci

authors

Mäki-Marttunen T,Aćimović J,Nykter M,Kesseli J,Ruohonen K,Yli-Harja O,Linne ML

doi

10.3389/fncom.2011.00026

subject

Has Abstract

pub_date

2011-06-01 00:00:00

pages

26

issn

1662-5188

journal_volume

5

pub_type

杂志文章
  • Input-output relation and energy efficiency in the neuron with different spike threshold dynamics.

    abstract::Neuron encodes and transmits information through generating sequences of output spikes, which is a high energy-consuming process. The spike is initiated when membrane depolarization reaches a threshold voltage. In many neurons, threshold is dynamic and depends on the rate of membrane depolarization (dV/dt) preceding a...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00062

    authors: Yi GS,Wang J,Tsang KM,Wei XL,Deng B

    更新日期:2015-05-27 00:00:00

  • Generation of Granule Cell Dendritic Morphologies by Estimating the Spatial Heterogeneity of Dendritic Branching.

    abstract::Biological realism of dendritic morphologies is important for simulating electrical stimulation of brain tissue. By adding point process modeling and conditional sampling to existing generation strategies, we provide a novel means of reproducing the nuanced branching behavior that occurs in different layers of granule...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00023

    authors: Chou ZZ,Yu GJ,Berger TW

    更新日期:2020-04-09 00:00:00

  • Deep networks for motor control functions.

    abstract::The motor system generates time-varying commands to move our limbs and body. Conventional descriptions of motor control and learning rely on dynamical representations of our body's state (forward and inverse models), and control policies that must be integrated forward to generate feedforward time-varying commands; th...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00032

    authors: Berniker M,Kording KP

    更新日期:2015-03-19 00:00:00

  • Combined Effects of Feedforward Inhibition and Excitation in Thalamocortical Circuit on the Transitions of Epileptic Seizures.

    abstract::The mechanisms underlying electrophysiologically observed two-way transitions between absence and tonic-clonic epileptic seizures in cerebral cortex remain unknown. The interplay within thalamocortical network is believed to give rise to these epileptic multiple modes of activity and transitions between them. In parti...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2017.00059

    authors: Fan D,Duan L,Wang Q,Luan G

    更新日期:2017-07-07 00:00:00

  • Visual Cortex Inspired CNN Model for Feature Construction in Text Analysis.

    abstract::Recently, biologically inspired models are gradually proposed to solve the problem in text analysis. Convolutional neural networks (CNN) are hierarchical artificial neural networks, which include a various of multilayer perceptrons. According to biological research, CNN can be improved by bringing in the attention mod...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00064

    authors: Fu H,Niu Z,Zhang C,Ma J,Chen J

    更新日期:2016-07-14 00:00:00

  • Nine criteria for a measure of scientific output.

    abstract::Scientific research produces new knowledge, technologies, and clinical treatments that can lead to enormous returns. Often, the path from basic research to new paradigms and direct impact on society takes time. Precise quantification of scientific output in the short-term is not an easy task but is critical for evalua...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00048

    authors: Kreiman G,Maunsell JH

    更新日期:2011-11-10 00:00:00

  • Tonality Tunes the Statistical Characteristics in Music: Computational Approaches on Statistical Learning.

    abstract::Statistical learning is a learning mechanism based on transition probability in sequences such as music and language. Recent computational and neurophysiological studies suggest that the statistical learning contributes to production, action, and musical creativity as well as prediction and perception. The present stu...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2019.00070

    authors: Daikoku T

    更新日期:2019-10-02 00:00:00

  • Model-Based Comparison of Deep Brain Stimulation Array Functionality with Varying Number of Radial Electrodes and Machine Learning Feature Sets.

    abstract::Deep brain stimulation (DBS) leads with radially distributed electrodes have potential to improve clinical outcomes through more selective targeting of pathways and networks within the brain. However, increasing the number of electrodes on clinical DBS leads by replacing conventional cylindrical shell electrodes with ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00058

    authors: Teplitzky BA,Zitella LM,Xiao Y,Johnson MD

    更新日期:2016-06-10 00:00:00

  • On the dynamics of cortical development: synchrony and synaptic self-organization.

    abstract::We describe a model for cortical development that resolves long-standing difficulties of earlier models. It is proposed that, during embryonic development, synchronous firing of neurons and their competition for limited metabolic resources leads to selection of an array of neurons with ultra-small-world characteristic...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00004

    authors: Wright JJ,Bourke PD

    更新日期:2013-02-15 00:00:00

  • Interareal coupling reduces encoding variability in multi-area models of spatial working memory.

    abstract::Persistent activity observed during delayed-response tasks for spatial working memory (Funahashi et al., 1989) has commonly been modeled by recurrent networks whose dynamics is described as a bump attractor (Compte et al., 2000). We examine the effects of interareal architecture on the dynamics of bump attractors in s...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00082

    authors: Kilpatrick ZP

    更新日期:2013-07-01 00:00:00

  • Architectural constraints are a major factor reducing path integration accuracy in the rat head direction cell system.

    abstract::Head direction cells fire to signal the direction in which an animal's head is pointing. They are able to track head direction using only internally-derived information (path integration)In this simulation study we investigate the factors that affect path integration accuracy. Specifically, two major limiting factors ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00010

    authors: Page HJ,Walters D,Stringer SM

    更新日期:2015-02-06 00:00:00

  • Analog Signaling With the "Digital" Molecular Switch CaMKII.

    abstract::Molecular switches, such as the protein kinase CaMKII, play a fundamental role in cell signaling by decoding inputs into either high or low states of activity; because the high activation state can be turned on and persist after the input ceases, these switches have earned a reputation as "digital." Although this on/o...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2018.00092

    authors: Clarke SE

    更新日期:2018-11-22 00:00:00

  • A Neuronal Network Model for Pitch Selectivity and Representation.

    abstract::Pitch is a perceptual correlate of periodicity. Sounds with distinct spectra can elicit the same pitch. Despite the importance of pitch perception, understanding the cellular mechanism of pitch perception is still a major challenge and a mechanistic model of pitch is lacking. A multi-stage neuronal network model is de...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00057

    authors: Huang C,Rinzel J

    更新日期:2016-06-16 00:00:00

  • Multimodal Neural Network for Rapid Serial Visual Presentation Brain Computer Interface.

    abstract::Brain computer interfaces allow users to preform various tasks using only the electrical activity of the brain. BCI applications often present the user a set of stimuli and record the corresponding electrical response. The BCI algorithm will then have to decode the acquired brain response and perform the desired task....

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00130

    authors: Manor R,Mishali L,Geva AB

    更新日期:2016-12-20 00:00:00

  • Multiple Frequency Bands Analysis of Large Scale Intrinsic Brain Networks and Its Application in Schizotypal Personality Disorder.

    abstract::The human brain is a complex system composed by several large scale intrinsic networks with distinct functions. The low frequency oscillation (LFO) signal of blood oxygen level dependent (BOLD), measured through resting-state fMRI, reflects the spontaneous neural activity of these networks. We propose to characterize ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2018.00064

    authors: Qi S,Gao Q,Shen J,Teng Y,Xie X,Sun Y,Wu J

    更新日期:2018-08-03 00:00:00

  • Probabilistic inference of short-term synaptic plasticity in neocortical microcircuits.

    abstract::Short-term synaptic plasticity is highly diverse across brain area, cortical layer, cell type, and developmental stage. Since short-term plasticity (STP) strongly shapes neural dynamics, this diversity suggests a specific and essential role in neural information processing. Therefore, a correct characterization of sho...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00075

    authors: Costa RP,Sjöström PJ,van Rossum MC

    更新日期:2013-06-06 00:00:00

  • Spike train auto-structure impacts post-synaptic firing and timing-based plasticity.

    abstract::Cortical neurons are typically driven by several thousand synapses. The precise spatiotemporal pattern formed by these inputs can modulate the response of a post-synaptic cell. In this work, we explore how the temporal structure of pre-synaptic inhibitory and excitatory inputs impact the post-synaptic firing of a cond...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00060

    authors: Scheller B,Castellano M,Vicente R,Pipa G

    更新日期:2011-12-16 00:00:00

  • Signal enhancement in the output stage of the basal ganglia by synaptic short-term plasticity in the direct, indirect, and hyperdirect pathways.

    abstract::Many of the synapses in the basal ganglia display short-term plasticity. Still, computational models have not yet been used to investigate how this affects signaling. Here we use a model of the basal ganglia network, constrained by available data, to quantitatively investigate how synaptic short-term plasticity affect...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00076

    authors: Lindahl M,Kamali Sarvestani I,Ekeberg O,Kotaleski JH

    更新日期:2013-06-19 00:00:00

  • Differing effects of attention in single-units and populations are well predicted by heterogeneous tuning and the normalization model of attention.

    abstract::Single-unit measurements have reported many different effects of attention on contrast-response (e.g., contrast-gain, response-gain, additive-offset dependent on visibility), while functional imaging measurements have more uniformly reported increases in response across all contrasts (additive-offset). The normalizati...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2014.00012

    authors: Hara Y,Pestilli F,Gardner JL

    更新日期:2014-02-19 00:00:00

  • Steering the Volume of Tissue Activated With a Directional Deep Brain Stimulation Lead in the Globus Pallidus Pars Interna: A Modeling Study With Heterogeneous Tissue Properties.

    abstract::Objective: To study the effect of directional deep brain stimulation (DBS) electrode configuration and vertical electrode spacing on the volume of tissue activated (VTA) in the globus pallidus, pars interna (GPi). Background: Directional DBS leads may allow clinicians to precisely direct current fields to different fu...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.561180

    authors: Zhang S,Tagliati M,Pouratian N,Cheeran B,Ross E,Pereira E

    更新日期:2020-09-25 00:00:00

  • Topological View of Flows Inside the BOLD Spontaneous Activity of the Human Brain.

    abstract::Spatio-temporal brain activities with variable delay detectable in resting-state functional magnetic resonance imaging (rs-fMRI) give rise to highly reproducible structures, termed cortical lag threads, that propagate from one brain region to another. Using a computational topology of data approach, we found that pers...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00034

    authors: Don APH,Peters JF,Ramanna S,Tozzi A

    更新日期:2020-04-22 00:00:00

  • Spatiotemporal imaging of complexity.

    abstract::What are the functional neuroimaging measurements required for more fully characterizing the events and locations of neocortical activity? A prime assumption has been that modulation of cortical activity will inevitably be reflected in changes in energy utilization (for the most part) changes of glucose and oxygen con...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2012.00101

    authors: Robinson SE,Mandell AJ,Coppola R

    更新日期:2013-01-24 00:00:00

  • Bayesian Inference of Synaptic Quantal Parameters from Correlated Vesicle Release.

    abstract::Synaptic transmission is both history-dependent and stochastic, resulting in varying responses to presentations of the same presynaptic stimulus. This complicates attempts to infer synaptic parameters and has led to the proposal of a number of different strategies for their quantification. Recently Bayesian approaches...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00116

    authors: Bird AD,Wall MJ,Richardson MJ

    更新日期:2016-11-25 00:00:00

  • A three-dimensional mathematical model for the signal propagation on a neuron's membrane.

    abstract::In order to be able to examine the extracellular potential's influence on network activity and to better understand dipole properties of the extracellular potential, we present and analyze a three-dimensional formulation of the cable equation which facilitates numeric simulations. When the neuron's intra- and extracel...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00094

    authors: Xylouris K,Wittum G

    更新日期:2015-07-17 00:00:00

  • Neural circuits for peristaltic wave propagation in crawling Drosophila larvae: analysis and modeling.

    abstract::Drosophila larvae crawl by peristaltic waves of muscle contractions, which propagate along the animal body and involve the simultaneous contraction of the left and right side of each segment. Coordinated propagation of contraction does not require sensory input, suggesting that movement is generated by a central patte...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00024

    authors: Gjorgjieva J,Berni J,Evers JF,Eglen SJ

    更新日期:2013-04-04 00:00:00

  • Segmental Bayesian estimation of gap-junctional and inhibitory conductance of inferior olive neurons from spike trains with complicated dynamics.

    abstract::The inverse problem for estimating model parameters from brain spike data is an ill-posed problem because of a huge mismatch in the system complexity between the model and the brain as well as its non-stationary dynamics, and needs a stochastic approach that finds the most likely solution among many possible solutions...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00056

    authors: Hoang H,Yamashita O,Tokuda IT,Sato MA,Kawato M,Toyama K

    更新日期:2015-05-21 00:00:00

  • Emergence of Relaxation Oscillations in Neurons Interacting With Non-stationary Ambient GABA.

    abstract::Dynamics of a homogeneous neural population interacting with active extracellular medium were considered. The corresponding mathematical model was tuned specifically to describe the behavior of interneurons with tonic GABA conductance under the action of non-stationary ambient GABA. The feedback provided by the GABA m...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2018.00019

    authors: Adamchik DA,Matrosov VV,Kazantsev VB

    更新日期:2018-04-05 00:00:00

  • A simple transfer function for nonlinear dendritic integration.

    abstract::Relatively recent advances in patch clamp recordings and iontophoresis have enabled unprecedented study of neuronal post-synaptic integration ("dendritic integration"). Findings support a separate layer of integration in the dendritic branches before potentials reach the cell's soma. While integration between branches...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00098

    authors: Singh MF,Zald DH

    更新日期:2015-08-10 00:00:00

  • Cooperation and Competition with Hyperscanning Methods: Review and Future Application to Emotion Domain.

    abstract::Cooperation and competition, as two common and opposite examples of interpersonal dynamics, are thought to be reflected by different cognitive, neural, and behavioral patterns. According to the conventional approach, they have been explored by measuring subjects' reactions during individual performance or turn-based i...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncom.2017.00086

    authors: Balconi M,Vanutelli ME

    更新日期:2017-09-29 00:00:00

  • A micro-pool model for decision-related signals in visual cortical areas.

    abstract::The study of sensory signaling in the visual cortex has been greatly advanced by the recording of neural activity simultaneously with the performance of a specific psychophysical task. Individual nerve cells may also increase their firing leading up to the particular choice or decision made on a single psychophysical ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00115

    authors: Parker AJ

    更新日期:2013-08-13 00:00:00