Correlation-based analysis and generation of multiple spike trains using hawkes models with an exogenous input.

Abstract:

:The correlation structure of neural activity is believed to play a major role in the encoding and possibly the decoding of information in neural populations. Recently, several methods were developed for exactly controlling the correlation structure of multi-channel synthetic spike trains (Brette, 2009; Krumin and Shoham, 2009; Macke et al., 2009; Gutnisky and Josic, 2010; Tchumatchenko et al., 2010) and, in a related work, correlation-based analysis of spike trains was used for blind identification of single-neuron models (Krumin et al., 2010), for identifying compact auto-regressive models for multi-channel spike trains, and for facilitating their causal network analysis (Krumin and Shoham, 2010). However, the diversity of correlation structures that can be explained by the feed-forward, non-recurrent, generative models used in these studies is limited. Hence, methods based on such models occasionally fail when analyzing correlation structures that are observed in neural activity. Here, we extend this framework by deriving closed-form expressions for the correlation structure of a more powerful multivariate self- and mutually exciting Hawkes model class that is driven by exogenous non-negative inputs. We demonstrate that the resulting Linear-Non-linear-Hawkes (LNH) framework is capable of capturing the dynamics of spike trains with a generally richer and more biologically relevant multi-correlation structure, and can be used to accurately estimate the Hawkes kernels or the correlation structure of external inputs in both simulated and real spike trains (recorded from visually stimulated mouse retinal ganglion cells). We conclude by discussing the method's limitations and the broader significance of strengthening the links between neural spike train analysis and classical system identification.

journal_name

Front Comput Neurosci

authors

Krumin M,Reutsky I,Shoham S

doi

10.3389/fncom.2010.00147

subject

Has Abstract

pub_date

2010-11-19 00:00:00

pages

147

issn

1662-5188

journal_volume

4

pub_type

杂志文章
  • Dynamical Graph Theory Networks Methods for the Analysis of Sparse Functional Connectivity Networks and for Determining Pinning Observability in Brain Networks.

    abstract::Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2017.00087

    authors: Meyer-Bäse A,Roberts RG,Illan IA,Meyer-Bäse U,Lobbes M,Stadlbauer A,Pinker-Domenig K

    更新日期:2017-10-05 00:00:00

  • Reducing the Effect of Spurious Phase Variations in Neural Oscillatory Signals.

    abstract::The phase-reset model of oscillatory EEG activity has received a lot of attention in the last decades for decoding different cognitive processes. Based on this model, the ERPs are assumed to be generated as a result of phase reorganization in ongoing EEG. Alignment of the phase of neuronal activities can be observed w...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2018.00082

    authors: Mortezapouraghdam Z,Corona-Strauss FI,Takahashi K,Strauss DJ

    更新日期:2018-10-08 00:00:00

  • Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation.

    abstract::Image registration and segmentation are the two most studied problems in medical image analysis. Deep learning algorithms have recently gained a lot of attention due to their success and state-of-the-art results in variety of problems and communities. In this paper, we propose a novel, efficient, and multi-task algori...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00017

    authors: Estienne T,Lerousseau M,Vakalopoulou M,Alvarez Andres E,Battistella E,Carré A,Chandra S,Christodoulidis S,Sahasrabudhe M,Sun R,Robert C,Talbot H,Paragios N,Deutsch E

    更新日期:2020-03-20 00:00:00

  • Structural Plasticity Denoises Responses and Improves Learning Speed.

    abstract::Despite an abundance of computational models for learning of synaptic weights, there has been relatively little research on structural plasticity, i.e., the creation and elimination of synapses. Especially, it is not clear how structural plasticity works in concert with spike-timing-dependent plasticity (STDP) and wha...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00093

    authors: Spiess R,George R,Cook M,Diehl PU

    更新日期:2016-09-08 00:00:00

  • Steering the Volume of Tissue Activated With a Directional Deep Brain Stimulation Lead in the Globus Pallidus Pars Interna: A Modeling Study With Heterogeneous Tissue Properties.

    abstract::Objective: To study the effect of directional deep brain stimulation (DBS) electrode configuration and vertical electrode spacing on the volume of tissue activated (VTA) in the globus pallidus, pars interna (GPi). Background: Directional DBS leads may allow clinicians to precisely direct current fields to different fu...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.561180

    authors: Zhang S,Tagliati M,Pouratian N,Cheeran B,Ross E,Pereira E

    更新日期:2020-09-25 00:00:00

  • Effects of Adaptation on Discrimination of Whisker Deflection Velocity and Angular Direction in a Model of the Barrel Cortex.

    abstract::Two important stimulus features represented within the rodent barrel cortex are velocity and angular direction of whisker deflection. Each cortical barrel receives information from thalamocortical (TC) cells that relay information from a single whisker, and TC input is decoded by barrel regular-spiking (RS) cells thro...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2018.00045

    authors: Patel MJ

    更新日期:2018-06-12 00:00:00

  • Estimating neuronal connectivity from axonal and dendritic density fields.

    abstract::Neurons innervate space by extending axonal and dendritic arborizations. When axons and dendrites come in close proximity of each other, synapses between neurons can be formed. Neurons vary greatly in their morphologies and synaptic connections with other neurons. The size and shape of the arborizations determine the ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00160

    authors: van Pelt J,van Ooyen A

    更新日期:2013-11-25 00:00:00

  • Structure learning and the Occam's razor principle: a new view of human function acquisition.

    abstract::We often encounter pairs of variables in the world whose mutual relationship can be described by a function. After training, human responses closely correspond to these functional relationships. Here we study how humans predict unobserved segments of a function that they have been trained on and we compare how human p...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2014.00121

    authors: Narain D,Smeets JB,Mamassian P,Brenner E,van Beers RJ

    更新日期:2014-09-30 00:00:00

  • MACOP modular architecture with control primitives.

    abstract::Walking, catching a ball and reaching are all tasks in which humans and animals exhibit advanced motor skills. Findings in biological research concerning motor control suggest a modular control hierarchy which combines movement/motor primitives into complex and natural movements. Engineers inspire their research on th...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00099

    authors: Waegeman T,Hermans M,Schrauwen B

    更新日期:2013-07-23 00:00:00

  • Input-output relation and energy efficiency in the neuron with different spike threshold dynamics.

    abstract::Neuron encodes and transmits information through generating sequences of output spikes, which is a high energy-consuming process. The spike is initiated when membrane depolarization reaches a threshold voltage. In many neurons, threshold is dynamic and depends on the rate of membrane depolarization (dV/dt) preceding a...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00062

    authors: Yi GS,Wang J,Tsang KM,Wei XL,Deng B

    更新日期:2015-05-27 00:00:00

  • Probabilistic inference of short-term synaptic plasticity in neocortical microcircuits.

    abstract::Short-term synaptic plasticity is highly diverse across brain area, cortical layer, cell type, and developmental stage. Since short-term plasticity (STP) strongly shapes neural dynamics, this diversity suggests a specific and essential role in neural information processing. Therefore, a correct characterization of sho...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00075

    authors: Costa RP,Sjöström PJ,van Rossum MC

    更新日期:2013-06-06 00:00:00

  • Cooperation and Competition with Hyperscanning Methods: Review and Future Application to Emotion Domain.

    abstract::Cooperation and competition, as two common and opposite examples of interpersonal dynamics, are thought to be reflected by different cognitive, neural, and behavioral patterns. According to the conventional approach, they have been explored by measuring subjects' reactions during individual performance or turn-based i...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncom.2017.00086

    authors: Balconi M,Vanutelli ME

    更新日期:2017-09-29 00:00:00

  • Deep networks for motor control functions.

    abstract::The motor system generates time-varying commands to move our limbs and body. Conventional descriptions of motor control and learning rely on dynamical representations of our body's state (forward and inverse models), and control policies that must be integrated forward to generate feedforward time-varying commands; th...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00032

    authors: Berniker M,Kording KP

    更新日期:2015-03-19 00:00:00

  • Analysis of Nociceptive Information Encoded in the Temporal Discharge Patterns of Cutaneous C-Fibers.

    abstract::The generation of pain signals from primary afferent neurons is explained by a labeled-line code. However, this notion cannot apply in a simple way to cutaneous C-fibers, which carry signals from a variety of receptors that respond to various stimuli including agonist chemicals. To represent the discharge patterns of ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00118

    authors: Cho K,Jang JH,Kim SP,Lee SH,Chung SC,Kim IY,Jang DP,Jung SJ

    更新日期:2016-11-18 00:00:00

  • Dopamine-signaled reward predictions generated by competitive excitation and inhibition in a spiking neural network model.

    abstract::Dopaminergic neurons in the mammalian substantia nigra display characteristic phasic responses to stimuli which reliably predict the receipt of primary rewards. These responses have been suggested to encode reward prediction-errors similar to those used in reinforcement learning. Here, we propose a model of dopaminerg...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00021

    authors: Chorley P,Seth AK

    更新日期:2011-05-18 00:00:00

  • Calcium messenger heterogeneity: a possible signal for spike timing-dependent plasticity.

    abstract::Calcium concentrations as well as time courses have been used to model the signaling cascades leading to changes in the strength of synaptic connections. Previous models consider the dendritic spines as uniform compartments regarding calcium signaling. However, calcium concentrations can vary drastically on distances ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2010.00158

    authors: Mihalas S

    更新日期:2011-01-13 00:00:00

  • Hyperpolarization-Activated Current Induces Period-Doubling Cascades and Chaos in a Cold Thermoreceptor Model.

    abstract::In this article, we describe and analyze the chaotic behavior of a conductance-based neuronal bursting model. This is a model with a reduced number of variables, yet it retains biophysical plausibility. Inspired by the activity of cold thermoreceptors, the model contains a persistent Sodium current, a Calcium-activate...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2017.00012

    authors: Xu K,Maidana JP,Caviedes M,Quero D,Aguirre P,Orio P

    更新日期:2017-03-10 00:00:00

  • Empirical Evaluation of Voluntarily Activatable Muscle Synergies.

    abstract::The muscle synergy hypothesis assumes that individual muscle synergies are independent of each other and voluntarily controllable. However, this assumption has not been empirically tested. This study tested if human subjects can voluntarily activate individual muscle synergies extracted by non-negative matrix factoriz...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2017.00082

    authors: Togo S,Imamizu H

    更新日期:2017-09-06 00:00:00

  • Impact of Physical Obstacles on the Structural and Effective Connectivity of in silico Neuronal Circuits.

    abstract::Scaffolds and patterned substrates are among the most successful strategies to dictate the connectivity between neurons in culture. Here, we used numerical simulations to investigate the capacity of physical obstacles placed on a flat substrate to shape structural connectivity, and in turn collective dynamics and effe...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00077

    authors: Ludl AA,Soriano J

    更新日期:2020-08-31 00:00:00

  • Visual motion integration is mediated by directional ambiguities in local motion signals.

    abstract::The output of primary visual cortex (V1) is a piecemeal representation of the visual scene and the response of any one cell cannot unambiguously guide sensorimotor behavior. It remains unsolved how subsequent stages of cortical processing combine ("pool") these early visual signals into a coherent representation. We (...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00167

    authors: Rocchi F,Ledgeway T,Webb BS

    更新日期:2013-11-18 00:00:00

  • Bayesian Inference of Synaptic Quantal Parameters from Correlated Vesicle Release.

    abstract::Synaptic transmission is both history-dependent and stochastic, resulting in varying responses to presentations of the same presynaptic stimulus. This complicates attempts to infer synaptic parameters and has led to the proposal of a number of different strategies for their quantification. Recently Bayesian approaches...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00116

    authors: Bird AD,Wall MJ,Richardson MJ

    更新日期:2016-11-25 00:00:00

  • A Neuronal Network Model for Pitch Selectivity and Representation.

    abstract::Pitch is a perceptual correlate of periodicity. Sounds with distinct spectra can elicit the same pitch. Despite the importance of pitch perception, understanding the cellular mechanism of pitch perception is still a major challenge and a mechanistic model of pitch is lacking. A multi-stage neuronal network model is de...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00057

    authors: Huang C,Rinzel J

    更新日期:2016-06-16 00:00:00

  • A Phenomenological Model of the Electrically Stimulated Auditory Nerve Fiber: Temporal and Biphasic Response Properties.

    abstract::We present a phenomenological model of electrically stimulated auditory nerve fibers (ANFs). The model reproduces the probabilistic and temporal properties of the ANF response to both monophasic and biphasic stimuli, in isolation. The main contribution of the model lies in its ability to reproduce statistics of the AN...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00008

    authors: Horne CD,Sumner CJ,Seeber BU

    更新日期:2016-02-08 00:00:00

  • Inhibition potentiates the synchronizing action of electrical synapses.

    abstract::In vivo and in vitro experimental studies have found that blocking electrical interactions connecting GABAergic interneurons reduces oscillatory activity in the gamma range in cortex. However, recent theoretical works have shown that the ability of electrical synapses to promote or impede synchrony, when alone, depend...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/neuro.10.008.2007

    authors: Pfeuty B,Golomb D,Mato G,Hansel D

    更新日期:2007-11-02 00:00:00

  • Bursting Neurons in the Hippocampal Formation Encode Features of LFP Rhythms.

    abstract::Burst spike patterns are common in regions of the hippocampal formation such as the subiculum and medial entorhinal cortex (MEC). Neurons in these areas are immersed in extracellular electrical potential fluctuations often recorded as the local field potential (LFP). LFP rhythms within different frequency bands are li...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00133

    authors: Constantinou M,Gonzalo Cogno S,Elijah DH,Kropff E,Gigg J,Samengo I,Montemurro MA

    更新日期:2016-12-26 00:00:00

  • On the role of spatial phase and phase correlation in vision, illusion, and cognition.

    abstract::Numerous findings indicate that spatial phase bears an important cognitive information. Distortion of phase affects topology of edge structures and makes images unrecognizable. In turn, appropriately phase-structured patterns give rise to various illusions of virtual image content and apparent motion. Despite a large ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00045

    authors: Gladilin E,Eils R

    更新日期:2015-04-21 00:00:00

  • Nine criteria for a measure of scientific output.

    abstract::Scientific research produces new knowledge, technologies, and clinical treatments that can lead to enormous returns. Often, the path from basic research to new paradigms and direct impact on society takes time. Precise quantification of scientific output in the short-term is not an easy task but is critical for evalua...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00048

    authors: Kreiman G,Maunsell JH

    更新日期:2011-11-10 00:00:00

  • Spike train auto-structure impacts post-synaptic firing and timing-based plasticity.

    abstract::Cortical neurons are typically driven by several thousand synapses. The precise spatiotemporal pattern formed by these inputs can modulate the response of a post-synaptic cell. In this work, we explore how the temporal structure of pre-synaptic inhibitory and excitatory inputs impact the post-synaptic firing of a cond...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00060

    authors: Scheller B,Castellano M,Vicente R,Pipa G

    更新日期:2011-12-16 00:00:00

  • Striatal Network Models of Huntington's Disease Dysfunction Phenotypes.

    abstract::We present a network model of striatum, which generates "winnerless" dynamics typical for a network of sparse, unidirectionally connected inhibitory units. We observe that these dynamics, while interesting and a good match to normal striatal electrophysiological recordings, are fragile. Specifically, we find that rand...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2017.00070

    authors: Zheng P,Kozloski J

    更新日期:2017-07-27 00:00:00

  • Computational models of neuron-astrocyte interaction in epilepsy.

    abstract::Astrocytes actively shape the dynamics of neurons and neuronal ensembles by affecting several aspects critical to neuronal function, such as regulating synaptic plasticity, modulating neuronal excitability, and maintaining extracellular ion balance. These pathways for astrocyte-neuron interaction can also enhance the ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2012.00058

    authors: Volman V,Bazhenov M,Sejnowski TJ

    更新日期:2012-08-13 00:00:00