Reducing the Effect of Spurious Phase Variations in Neural Oscillatory Signals.

Abstract:

:The phase-reset model of oscillatory EEG activity has received a lot of attention in the last decades for decoding different cognitive processes. Based on this model, the ERPs are assumed to be generated as a result of phase reorganization in ongoing EEG. Alignment of the phase of neuronal activities can be observed within or between different assemblies of neurons across the brain. Phase synchronization has been used to explore and understand perception, attentional binding and considering it in the domain of neuronal correlates of consciousness. The importance of the topic and its vast exploration in different domains of the neuroscience presses the need for appropriate tools and methods for measuring the level of phase synchronization of neuronal activities. Measuring the level of instantaneous phase (IP) synchronization has been used extensively in numerous studies of ERPs as well as oscillatory activity for a better understanding of the underlying cognitive binding with regard to different set of stimulations such as auditory and visual. However, the reliability of results can be challenged as a result of noise artifact in IP. Phase distortion due to environmental noise artifacts as well as different pre-processing steps on signals can lead to generation of artificial phase jumps. One of such effects presented recently is the effect of low envelope on the IP of signal. It has been shown that as the instantaneous envelope of the analytic signal approaches zero, the variations in the phase increase, effectively leading to abrupt transitions in the phase. These abrupt transitions can distort the phase synchronization results as they are not related to any neurophysiological effect. These transitions are called spurious phase variation. In this study, we present a model to remove generated artificial phase variations due to the effect of low envelope. The proposed method is based on a simplified form of a Kalman smoother, that is able to model the IP behavior in narrow-bandpassed oscillatory signals. In this work we first explain the details of the proposed Kalman smoother for modeling the dynamics of the phase variations in narrow-bandpassed signals and then evaluate it on a set of synthetic signals. Finally, we apply the model on ongoing-EEG signals to assess the removal of spurious phase variations.

journal_name

Front Comput Neurosci

authors

Mortezapouraghdam Z,Corona-Strauss FI,Takahashi K,Strauss DJ

doi

10.3389/fncom.2018.00082

subject

Has Abstract

pub_date

2018-10-08 00:00:00

pages

82

issn

1662-5188

journal_volume

12

pub_type

杂志文章
  • Brain Network Analysis and Classification Based on Convolutional Neural Network.

    abstract::Background: Convolution neural networks (CNN) is increasingly used in computer science and finds more and more applications in different fields. However, analyzing brain network with CNN is not trivial, due to the non-Euclidean characteristics of brain network built by graph theory. Method: To address this problem, we...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2018.00095

    authors: Meng L,Xiang J

    更新日期:2018-12-10 00:00:00

  • Computational Neural Modeling of Auditory Cortical Receptive Fields.

    abstract::Previous studies have shown that the auditory cortex can enhance the perception of behaviorally important sounds in the presence of background noise, but the mechanisms by which it does this are not yet elucidated. Rapid plasticity of spectrotemporal receptive fields (STRFs) in the primary (A1) cortical neurons is obs...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2019.00028

    authors: Chambers JD,Elgueda D,Fritz JB,Shamma SA,Burkitt AN,Grayden DB

    更新日期:2019-05-24 00:00:00

  • Segmental Bayesian estimation of gap-junctional and inhibitory conductance of inferior olive neurons from spike trains with complicated dynamics.

    abstract::The inverse problem for estimating model parameters from brain spike data is an ill-posed problem because of a huge mismatch in the system complexity between the model and the brain as well as its non-stationary dynamics, and needs a stochastic approach that finds the most likely solution among many possible solutions...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00056

    authors: Hoang H,Yamashita O,Tokuda IT,Sato MA,Kawato M,Toyama K

    更新日期:2015-05-21 00:00:00

  • The role of pulvinar in the transmission of information in the visual hierarchy.

    abstract::VISUAL RECEPTIVE FIELD (RF) ATTRIBUTES IN VISUAL CORTEX OF PRIMATES HAVE BEEN EXPLAINED MAINLY FROM CORTICAL CONNECTIONS: visual RFs progress from simple to complex through cortico-cortical pathways from lower to higher levels in the visual hierarchy. This feedforward flow of information is paired with top-down proces...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2012.00029

    authors: Cortes N,van Vreeswijk C

    更新日期:2012-05-28 00:00:00

  • Stochastic Resonance Based Visual Perception Using Spiking Neural Networks.

    abstract::Our aim is to propose an efficient algorithm for enhancing the contrast of dark images based on the principle of stochastic resonance in a global feedback spiking network of integrate-and-fire neurons. By linear approximation and direct simulation, we disclose the dependence of the peak signal-to-noise ratio on the sp...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00024

    authors: Fu Y,Kang Y,Chen G

    更新日期:2020-05-15 00:00:00

  • A Phenomenological Model of the Electrically Stimulated Auditory Nerve Fiber: Temporal and Biphasic Response Properties.

    abstract::We present a phenomenological model of electrically stimulated auditory nerve fibers (ANFs). The model reproduces the probabilistic and temporal properties of the ANF response to both monophasic and biphasic stimuli, in isolation. The main contribution of the model lies in its ability to reproduce statistics of the AN...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00008

    authors: Horne CD,Sumner CJ,Seeber BU

    更新日期:2016-02-08 00:00:00

  • Short-Term Facilitation may Stabilize Parametric Working Memory Trace.

    abstract::Networks with continuous set of attractors are considered to be a paradigmatic model for parametric working memory (WM), but require fine tuning of connections and are thus structurally unstable. Here we analyzed the network with ring attractor, where connections are not perfectly tuned and the activity state therefor...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00040

    authors: Itskov V,Hansel D,Tsodyks M

    更新日期:2011-10-24 00:00:00

  • Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation.

    abstract::Image registration and segmentation are the two most studied problems in medical image analysis. Deep learning algorithms have recently gained a lot of attention due to their success and state-of-the-art results in variety of problems and communities. In this paper, we propose a novel, efficient, and multi-task algori...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00017

    authors: Estienne T,Lerousseau M,Vakalopoulou M,Alvarez Andres E,Battistella E,Carré A,Chandra S,Christodoulidis S,Sahasrabudhe M,Sun R,Robert C,Talbot H,Paragios N,Deutsch E

    更新日期:2020-03-20 00:00:00

  • Investigating irregularly patterned deep brain stimulation signal design using biophysical models.

    abstract::Parkinson's disease (PD) is a neurodegenerative disorder which follows from cell loss of dopaminergic neurons in the substantia nigra pars compacta (SNc), a nucleus in the basal ganglia (BG). Deep brain stimulation (DBS) is an electrical therapy that modulates the pathological activity to treat the motor symptoms of P...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00078

    authors: Summerson SR,Aazhang B,Kemere C

    更新日期:2015-06-26 00:00:00

  • Cancer Risk Analysis Based on Improved Probabilistic Neural Network.

    abstract::The problem of cancer risk analysis is of great importance to health-service providers and medical researchers. In this study, we propose a novel Artificial Neural Network (ANN) algorithm based on the probabilistic framework, which aims to investigate patient patterns associated with their disease development. Compare...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00058

    authors: Yang C,Yang J,Liu Y,Geng X

    更新日期:2020-07-21 00:00:00

  • A model of food reward learning with dynamic reward exposure.

    abstract::The process of conditioning via reward learning is highly relevant to the study of food choice and obesity. Learning is itself shaped by environmental exposure, with the potential for such exposures to vary substantially across individuals and across place and time. In this paper, we use computational techniques to ex...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2012.00082

    authors: Hammond RA,Ornstein JT,Fellows LK,Dubé L,Levitan R,Dagher A

    更新日期:2012-10-11 00:00:00

  • Alterations of Muscle Synergies During Voluntary Arm Reaching Movement in Subacute Stroke Survivors at Different Levels of Impairment.

    abstract::Motor system uses muscle synergies as a modular organization to simplify the control of movements. Motor cortical impairments, such as stroke and spinal cord injuries, disrupt the orchestration of the muscle synergies and result in abnormal movements. In this paper, the alterations of muscle synergies in subacute stro...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2018.00069

    authors: Pan B,Sun Y,Xie B,Huang Z,Wu J,Hou J,Liu Y,Huang Z,Zhang Z

    更新日期:2018-08-21 00:00:00

  • On the dynamics of cortical development: synchrony and synaptic self-organization.

    abstract::We describe a model for cortical development that resolves long-standing difficulties of earlier models. It is proposed that, during embryonic development, synchronous firing of neurons and their competition for limited metabolic resources leads to selection of an array of neurons with ultra-small-world characteristic...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00004

    authors: Wright JJ,Bourke PD

    更新日期:2013-02-15 00:00:00

  • The Effects of Capillary Transit Time Heterogeneity (CTH) on the Cerebral Uptake of Glucose and Glucose Analogs: Application to FDG and Comparison to Oxygen Uptake.

    abstract::Glucose is the brain's principal source of ATP, but the extent to which cerebral glucose consumption (CMRglc) is coupled with its oxygen consumption (CMRO2) remains unclear. Measurements of the brain's oxygen-glucose index OGI = CMRO2/CMRglc suggest that its oxygen uptake largely suffices for oxidative phosphorylation...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00103

    authors: Angleys H,Jespersen SN,Østergaard L

    更新日期:2016-10-13 00:00:00

  • Generation of Granule Cell Dendritic Morphologies by Estimating the Spatial Heterogeneity of Dendritic Branching.

    abstract::Biological realism of dendritic morphologies is important for simulating electrical stimulation of brain tissue. By adding point process modeling and conditional sampling to existing generation strategies, we provide a novel means of reproducing the nuanced branching behavior that occurs in different layers of granule...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00023

    authors: Chou ZZ,Yu GJ,Berger TW

    更新日期:2020-04-09 00:00:00

  • Analysis of Nociceptive Information Encoded in the Temporal Discharge Patterns of Cutaneous C-Fibers.

    abstract::The generation of pain signals from primary afferent neurons is explained by a labeled-line code. However, this notion cannot apply in a simple way to cutaneous C-fibers, which carry signals from a variety of receptors that respond to various stimuli including agonist chemicals. To represent the discharge patterns of ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00118

    authors: Cho K,Jang JH,Kim SP,Lee SH,Chung SC,Kim IY,Jang DP,Jung SJ

    更新日期:2016-11-18 00:00:00

  • Simultaneous learning and filtering without delusions: a Bayes-optimal combination of Predictive Inference and Adaptive Filtering.

    abstract::Predictive coding appears to be one of the fundamental working principles of brain processing. Amongst other aspects, brains often predict the sensory consequences of their own actions. Predictive coding resembles Kalman filtering, where incoming sensory information is filtered to produce prediction errors for subsequ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00047

    authors: Kneissler J,Drugowitsch J,Friston K,Butz MV

    更新日期:2015-04-30 00:00:00

  • Neural circuits for peristaltic wave propagation in crawling Drosophila larvae: analysis and modeling.

    abstract::Drosophila larvae crawl by peristaltic waves of muscle contractions, which propagate along the animal body and involve the simultaneous contraction of the left and right side of each segment. Coordinated propagation of contraction does not require sensory input, suggesting that movement is generated by a central patte...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00024

    authors: Gjorgjieva J,Berni J,Evers JF,Eglen SJ

    更新日期:2013-04-04 00:00:00

  • Demystifying Brain Tumor Segmentation Networks: Interpretability and Uncertainty Analysis.

    abstract::The accurate automatic segmentation of gliomas and its intra-tumoral structures is important not only for treatment planning but also for follow-up evaluations. Several methods based on 2D and 3D Deep Neural Networks (DNN) have been developed to segment brain tumors and to classify different categories of tumors from ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00006

    authors: Natekar P,Kori A,Krishnamurthi G

    更新日期:2020-02-07 00:00:00

  • Population coding of visual space: comparison of spatial representations in dorsal and ventral pathways.

    abstract::Although the representation of space is as fundamental to visual processing as the representation of shape, it has received relatively little attention from neurophysiological investigations. In this study we characterize representations of space within visual cortex, and examine how they differ in a first direct comp...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2010.00159

    authors: Sereno AB,Lehky SR

    更新日期:2011-02-01 00:00:00

  • Interareal coupling reduces encoding variability in multi-area models of spatial working memory.

    abstract::Persistent activity observed during delayed-response tasks for spatial working memory (Funahashi et al., 1989) has commonly been modeled by recurrent networks whose dynamics is described as a bump attractor (Compte et al., 2000). We examine the effects of interareal architecture on the dynamics of bump attractors in s...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00082

    authors: Kilpatrick ZP

    更新日期:2013-07-01 00:00:00

  • Multimodal Neural Network for Rapid Serial Visual Presentation Brain Computer Interface.

    abstract::Brain computer interfaces allow users to preform various tasks using only the electrical activity of the brain. BCI applications often present the user a set of stimuli and record the corresponding electrical response. The BCI algorithm will then have to decode the acquired brain response and perform the desired task....

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00130

    authors: Manor R,Mishali L,Geva AB

    更新日期:2016-12-20 00:00:00

  • Cooperation and Competition with Hyperscanning Methods: Review and Future Application to Emotion Domain.

    abstract::Cooperation and competition, as two common and opposite examples of interpersonal dynamics, are thought to be reflected by different cognitive, neural, and behavioral patterns. According to the conventional approach, they have been explored by measuring subjects' reactions during individual performance or turn-based i...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncom.2017.00086

    authors: Balconi M,Vanutelli ME

    更新日期:2017-09-29 00:00:00

  • A single theoretical framework for circular features processing in humans: orientation and direction of motion compared.

    abstract::Common computational principles underlie processing of various visual features in the cortex. They are considered to create similar patterns of contextual modulations in behavioral studies for different features as orientation and direction of motion. Here, I studied the possibility that a single theoretical framework...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2012.00028

    authors: Tzvetanov T

    更新日期:2012-05-22 00:00:00

  • Dynamical Graph Theory Networks Methods for the Analysis of Sparse Functional Connectivity Networks and for Determining Pinning Observability in Brain Networks.

    abstract::Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2017.00087

    authors: Meyer-Bäse A,Roberts RG,Illan IA,Meyer-Bäse U,Lobbes M,Stadlbauer A,Pinker-Domenig K

    更新日期:2017-10-05 00:00:00

  • Neuronal Degeneration Impairs Rhythms Between Connected Microcircuits.

    abstract::Synchronization of neural activity across brain regions is critical to processes that include perception, learning, and memory. After traumatic brain injury (TBI), neuronal degeneration is one possible effect and can alter communication between neural circuits. Consequently, synchronization between neurons may change ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00018

    authors: Schumm SN,Gabrieli D,Meaney DF

    更新日期:2020-03-03 00:00:00

  • Tonality Tunes the Statistical Characteristics in Music: Computational Approaches on Statistical Learning.

    abstract::Statistical learning is a learning mechanism based on transition probability in sequences such as music and language. Recent computational and neurophysiological studies suggest that the statistical learning contributes to production, action, and musical creativity as well as prediction and perception. The present stu...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2019.00070

    authors: Daikoku T

    更新日期:2019-10-02 00:00:00

  • Correlation-based analysis and generation of multiple spike trains using hawkes models with an exogenous input.

    abstract::The correlation structure of neural activity is believed to play a major role in the encoding and possibly the decoding of information in neural populations. Recently, several methods were developed for exactly controlling the correlation structure of multi-channel synthetic spike trains (Brette, 2009; Krumin and Shoh...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2010.00147

    authors: Krumin M,Reutsky I,Shoham S

    更新日期:2010-11-19 00:00:00

  • Neural variability, or lack thereof.

    abstract::We do not claim that the brain is completely deterministic, and we agree that noise may be beneficial in some cases. But we suggest that neuronal variability may be often overestimated, due to uncontrolled internal variables, and/or the use of inappropriate reference times. These ideas are not new, but should be re-ex...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00007

    authors: Masquelier T

    更新日期:2013-02-25 00:00:00

  • Layer-Dependent Attentional Processing by Top-down Signals in a Visual Cortical Microcircuit Model.

    abstract::A vast amount of information about the external world continuously flows into the brain, whereas its capacity to process such information is limited. Attention enables the brain to allocate its resources of information processing to selected sensory inputs for reducing its computational load, and effects of attention ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00031

    authors: Wagatsuma N,Potjans TC,Diesmann M,Fukai T

    更新日期:2011-07-08 00:00:00