Spatiotemporal imaging of complexity.

Abstract:

:What are the functional neuroimaging measurements required for more fully characterizing the events and locations of neocortical activity? A prime assumption has been that modulation of cortical activity will inevitably be reflected in changes in energy utilization (for the most part) changes of glucose and oxygen consumption. Are such a measures complete and sufficient? More direct measures of cortical electrophysiological activity show event or task-related modulation of amplitude or band-limited oscillatory power. Using magnetoencephalography (MEG), these measures have been shown to correlate well with energy utilization sensitive BOLD fMRI. In this paper, we explore the existence of state changes in electrophysiological cortical activity that can occur independently of changes in averaged amplitude, source power or indices of metabolic rates. In addition, we demonstrate that such state changes can be described by applying a new measure of complexity, rank vector entropy (RVE), to source waveform estimates from beamformer-processed MEG. RVE is a non-parametric symbolic dynamic informational entropy measure that accommodates the wide dynamic range of measured brain signals while resolving its temporal variations. By representing the measurements by their rank values, RVE overcomes the problem of defining embedding space partitions without resorting to signal compression. This renders RVE-independent of absolute signal amplitude. In addition, this approach is robust, being relatively free of tunable parameters. We present examples of task-free and task-dependent MEG demonstrating that RVE provides new information by uncovering hidden dynamical structure in the apparent turbulent (or chaotic) dynamics of spontaneous cortical activity.

journal_name

Front Comput Neurosci

authors

Robinson SE,Mandell AJ,Coppola R

doi

10.3389/fncom.2012.00101

subject

Has Abstract

pub_date

2013-01-24 00:00:00

pages

101

issn

1662-5188

journal_volume

6

pub_type

杂志文章
  • Synaptic bouton properties are tuned to best fit the prevailing firing pattern.

    abstract::The morphology of presynaptic specializations can vary greatly ranging from classical single-release-site boutons in the central nervous system to boutons of various sizes harboring multiple vesicle release sites. Multi-release-site boutons can be found in several neural contexts, for example at the neuromuscular junc...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2014.00101

    authors: Knodel MM,Geiger R,Ge L,Bucher D,Grillo A,Wittum G,Schuster CM,Queisser G

    更新日期:2014-09-09 00:00:00

  • A simple transfer function for nonlinear dendritic integration.

    abstract::Relatively recent advances in patch clamp recordings and iontophoresis have enabled unprecedented study of neuronal post-synaptic integration ("dendritic integration"). Findings support a separate layer of integration in the dendritic branches before potentials reach the cell's soma. While integration between branches...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00098

    authors: Singh MF,Zald DH

    更新日期:2015-08-10 00:00:00

  • Causal Inference for Cross-Modal Action Selection: A Computational Study in a Decision Making Framework.

    abstract::Animals try to make sense of sensory information from multiple modalities by categorizing them into perceptions of individual or multiple external objects or internal concepts. For example, the brain constructs sensory, spatial representations of the locations of visual and auditory stimuli in the visual and auditory ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00062

    authors: Daemi M,Harris LR,Crawford JD

    更新日期:2016-06-23 00:00:00

  • Effects of Adaptation on Discrimination of Whisker Deflection Velocity and Angular Direction in a Model of the Barrel Cortex.

    abstract::Two important stimulus features represented within the rodent barrel cortex are velocity and angular direction of whisker deflection. Each cortical barrel receives information from thalamocortical (TC) cells that relay information from a single whisker, and TC input is decoded by barrel regular-spiking (RS) cells thro...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2018.00045

    authors: Patel MJ

    更新日期:2018-06-12 00:00:00

  • Invariant object recognition based on extended fragments.

    abstract::Visual appearance of natural objects is profoundly affected by viewing conditions such as viewpoint and illumination. Human subjects can nevertheless compensate well for variations in these viewing conditions. The strategies that the visual system uses to accomplish this are largely unclear. Previous computational stu...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2012.00056

    authors: Bart E,Hegdé J

    更新日期:2012-08-24 00:00:00

  • Effects of Calcium Spikes in the Layer 5 Pyramidal Neuron on Coincidence Detection and Activity Propagation.

    abstract::The role of dendritic spiking mechanisms in neural processing is so far poorly understood. To investigate the role of calcium spikes in the functional properties of the single neuron and recurrent networks, we investigated a three compartment neuron model of the layer 5 pyramidal neuron with calcium dynamics in the di...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00076

    authors: Chua Y,Morrison A

    更新日期:2016-07-22 00:00:00

  • Nine criteria for a measure of scientific output.

    abstract::Scientific research produces new knowledge, technologies, and clinical treatments that can lead to enormous returns. Often, the path from basic research to new paradigms and direct impact on society takes time. Precise quantification of scientific output in the short-term is not an easy task but is critical for evalua...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00048

    authors: Kreiman G,Maunsell JH

    更新日期:2011-11-10 00:00:00

  • Letting the daylight in: Reviewing the reviewers and other ways to maximize transparency in science.

    abstract::With the emergence of online publishing, opportunities to maximize transparency of scientific research have grown considerably. However, these possibilities are still only marginally used. We argue for the implementation of (1) peer-reviewed peer review, (2) transparent editorial hierarchies, and (3) online data publi...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2012.00020

    authors: Wicherts JM,Kievit RA,Bakker M,Borsboom D

    更新日期:2012-04-03 00:00:00

  • Striatal Network Models of Huntington's Disease Dysfunction Phenotypes.

    abstract::We present a network model of striatum, which generates "winnerless" dynamics typical for a network of sparse, unidirectionally connected inhibitory units. We observe that these dynamics, while interesting and a good match to normal striatal electrophysiological recordings, are fragile. Specifically, we find that rand...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2017.00070

    authors: Zheng P,Kozloski J

    更新日期:2017-07-27 00:00:00

  • Higher-order correlations in non-stationary parallel spike trains: statistical modeling and inference.

    abstract::The extent to which groups of neurons exhibit higher-order correlations in their spiking activity is a controversial issue in current brain research. A major difficulty is that currently available tools for the analysis of massively parallel spike trains (N >10) for higher-order correlations typically require vast sam...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2010.00016

    authors: Staude B,Grün S,Rotter S

    更新日期:2010-07-02 00:00:00

  • Anti-kindling Induced by Two-Stage Coordinated Reset Stimulation with Weak Onset Intensity.

    abstract::Abnormal neuronal synchrony plays an important role in a number of brain diseases. To specifically counteract abnormal neuronal synchrony by desynchronization, Coordinated Reset (CR) stimulation, a spatiotemporally patterned stimulation technique, was designed with computational means. In neuronal networks with spike ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00044

    authors: Zeitler M,Tass PA

    更新日期:2016-05-17 00:00:00

  • Disinhibition-Induced Delayed Onset of Epileptic Spike-Wave Discharges in a Five Variable Model of Cortex and Thalamus.

    abstract::Based on a modified neural field network model composed of cortex and thalamus, we here propose a computational framework to investigate the onset control of absence seizure, which is characterized by the spike-wave discharges. Firstly, we briefly demonstrate the existence of various transition types in Taylor's model...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00028

    authors: Liu S,Wang Q,Fan D

    更新日期:2016-04-05 00:00:00

  • Stability constraints on large-scale structural brain networks.

    abstract::Stability is an important dynamical property of complex systems and underpins a broad range of coherent self-organized behavior. Based on evidence that some neurological disorders correspond to linear instabilities, we hypothesize that stability constrains the brain's electrical activity and influences its structure a...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00031

    authors: Gray RT,Robinson PA

    更新日期:2013-04-12 00:00:00

  • Predicting Antidepressant Citalopram Treatment Response via Changes in Brain Functional Connectivity After Acute Intravenous Challenge.

    abstract::Introduction: The early and therapy-specific prediction of treatment success in major depressive disorder is of paramount importance due to high lifetime prevalence, and heterogeneity of response to standard medication and symptom expression. Hence, this study assessed the predictability of long-term antidepressant ef...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.554186

    authors: Klöbl M,Gryglewski G,Rischka L,Godbersen GM,Unterholzner J,Reed MB,Michenthaler P,Vanicek T,Winkler-Pjrek E,Hahn A,Kasper S,Lanzenberger R

    更新日期:2020-10-06 00:00:00

  • Estimating neuronal connectivity from axonal and dendritic density fields.

    abstract::Neurons innervate space by extending axonal and dendritic arborizations. When axons and dendrites come in close proximity of each other, synapses between neurons can be formed. Neurons vary greatly in their morphologies and synaptic connections with other neurons. The size and shape of the arborizations determine the ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00160

    authors: van Pelt J,van Ooyen A

    更新日期:2013-11-25 00:00:00

  • A three-dimensional mathematical model for the signal propagation on a neuron's membrane.

    abstract::In order to be able to examine the extracellular potential's influence on network activity and to better understand dipole properties of the extracellular potential, we present and analyze a three-dimensional formulation of the cable equation which facilitates numeric simulations. When the neuron's intra- and extracel...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00094

    authors: Xylouris K,Wittum G

    更新日期:2015-07-17 00:00:00

  • Computational Neural Modeling of Auditory Cortical Receptive Fields.

    abstract::Previous studies have shown that the auditory cortex can enhance the perception of behaviorally important sounds in the presence of background noise, but the mechanisms by which it does this are not yet elucidated. Rapid plasticity of spectrotemporal receptive fields (STRFs) in the primary (A1) cortical neurons is obs...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2019.00028

    authors: Chambers JD,Elgueda D,Fritz JB,Shamma SA,Burkitt AN,Grayden DB

    更新日期:2019-05-24 00:00:00

  • Learning modular policies for robotics.

    abstract::A promising idea for scaling robot learning to more complex tasks is to use elemental behaviors as building blocks to compose more complex behavior. Ideally, such building blocks are used in combination with a learning algorithm that is able to learn to select, adapt, sequence and co-activate the building blocks. Whil...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncom.2014.00062

    authors: Neumann G,Daniel C,Paraschos A,Kupcsik A,Peters J

    更新日期:2014-06-11 00:00:00

  • Determine Neuronal Tuning Curves by Exploring Optimum Firing Rate Distribution for Information Efficiency.

    abstract::This paper proposed a new method to determine the neuronal tuning curves for maximum information efficiency by computing the optimum firing rate distribution. Firstly, we proposed a general definition for the information efficiency, which is relevant to mutual information and neuronal energy consumption. The energy co...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2017.00010

    authors: Han F,Wang Z,Fan H

    更新日期:2017-02-21 00:00:00

  • Steering the Volume of Tissue Activated With a Directional Deep Brain Stimulation Lead in the Globus Pallidus Pars Interna: A Modeling Study With Heterogeneous Tissue Properties.

    abstract::Objective: To study the effect of directional deep brain stimulation (DBS) electrode configuration and vertical electrode spacing on the volume of tissue activated (VTA) in the globus pallidus, pars interna (GPi). Background: Directional DBS leads may allow clinicians to precisely direct current fields to different fu...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.561180

    authors: Zhang S,Tagliati M,Pouratian N,Cheeran B,Ross E,Pereira E

    更新日期:2020-09-25 00:00:00

  • A Glutamatergic Spine Model to Enable Multi-Scale Modeling of Nonlinear Calcium Dynamics.

    abstract::In synapses, calcium is required for modulating synaptic transmission, plasticity, synaptogenesis, and synaptic pruning. The regulation of calcium dynamics within neurons involves cellular mechanisms such as synaptically activated channels and pumps, calcium buffers, and calcium sequestrating organelles. Many experime...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2018.00058

    authors: Hu E,Mergenthal A,Bingham CS,Song D,Bouteiller JM,Berger TW

    更新日期:2018-07-27 00:00:00

  • Sex Differences in Fiber Connection between the Striatum and Subcortical and Cortical Regions.

    abstract::The striatum is an important subcortical structure with extensive connections to other regions of the brain. These connections are believed to play important roles in behaviors such as reward-related processes and impulse control, which show significant sex differences. However, little is known about sex differences i...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00100

    authors: Lei X,Han Z,Chen C,Bai L,Xue G,Dong Q

    更新日期:2016-09-23 00:00:00

  • Multimodal Neural Network for Rapid Serial Visual Presentation Brain Computer Interface.

    abstract::Brain computer interfaces allow users to preform various tasks using only the electrical activity of the brain. BCI applications often present the user a set of stimuli and record the corresponding electrical response. The BCI algorithm will then have to decode the acquired brain response and perform the desired task....

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00130

    authors: Manor R,Mishali L,Geva AB

    更新日期:2016-12-20 00:00:00

  • Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation.

    abstract::Image registration and segmentation are the two most studied problems in medical image analysis. Deep learning algorithms have recently gained a lot of attention due to their success and state-of-the-art results in variety of problems and communities. In this paper, we propose a novel, efficient, and multi-task algori...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00017

    authors: Estienne T,Lerousseau M,Vakalopoulou M,Alvarez Andres E,Battistella E,Carré A,Chandra S,Christodoulidis S,Sahasrabudhe M,Sun R,Robert C,Talbot H,Paragios N,Deutsch E

    更新日期:2020-03-20 00:00:00

  • A model of food reward learning with dynamic reward exposure.

    abstract::The process of conditioning via reward learning is highly relevant to the study of food choice and obesity. Learning is itself shaped by environmental exposure, with the potential for such exposures to vary substantially across individuals and across place and time. In this paper, we use computational techniques to ex...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2012.00082

    authors: Hammond RA,Ornstein JT,Fellows LK,Dubé L,Levitan R,Dagher A

    更新日期:2012-10-11 00:00:00

  • Interareal coupling reduces encoding variability in multi-area models of spatial working memory.

    abstract::Persistent activity observed during delayed-response tasks for spatial working memory (Funahashi et al., 1989) has commonly been modeled by recurrent networks whose dynamics is described as a bump attractor (Compte et al., 2000). We examine the effects of interareal architecture on the dynamics of bump attractors in s...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00082

    authors: Kilpatrick ZP

    更新日期:2013-07-01 00:00:00

  • Anisotropic connectivity implements motion-based prediction in a spiking neural network.

    abstract::Predictive coding hypothesizes that the brain explicitly infers upcoming sensory input to establish a coherent representation of the world. Although it is becoming generally accepted, it is not clear on which level spiking neural networks may implement predictive coding and what function their connectivity may have. W...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00112

    authors: Kaplan BA,Lansner A,Masson GS,Perrinet LU

    更新日期:2013-09-17 00:00:00

  • MACOP modular architecture with control primitives.

    abstract::Walking, catching a ball and reaching are all tasks in which humans and animals exhibit advanced motor skills. Findings in biological research concerning motor control suggest a modular control hierarchy which combines movement/motor primitives into complex and natural movements. Engineers inspire their research on th...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00099

    authors: Waegeman T,Hermans M,Schrauwen B

    更新日期:2013-07-23 00:00:00

  • A circular model for song motor control in Serinus canaria.

    abstract::Song production in songbirds is controlled by a network of nuclei distributed across several brain regions, which drives respiratory and vocal motor systems to generate sound. We built a model for birdsong production, whose variables are the average activities of different neural populations within these nuclei of the...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00041

    authors: Alonso RG,Trevisan MA,Amador A,Goller F,Mindlin GB

    更新日期:2015-04-07 00:00:00

  • Comparative Analysis of Behavioral Models for Adaptive Learning in Changing Environments.

    abstract::Probabilistic models of decision making under various forms of uncertainty have been applied in recent years to numerous behavioral and model-based fMRI studies. These studies were highly successful in enabling a better understanding of behavior and delineating the functional properties of brain areas involved in deci...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00033

    authors: Marković D,Kiebel SJ

    更新日期:2016-04-20 00:00:00