Simulation of gamma rhythms in networks of interneurons and pyramidal cells.

Abstract:

:Networks of hippocampal interneurons, with pyramidal neurons pharmacologically disconnected, can generate gamma-frequency (20 Hz and above) oscillations. Experiments and models have shown how the network frequency depends on excitation of the interneurons, and on the parameters of GABAA-mediated IPSCs between the interneurons (conductance and time course). Here we use network simulations to investigate how pyramidal cells, connected to the interneurons and to each other through AMPA-type and/or NMDA-type glutamate receptors, might modify the interneuron network oscillation. With or without AMPA-receptor mediated excitation of the interneurons, the pyramidal cells and interneurons fired in phase during the gamma oscillation. Synaptic excitation of the interneurons by pyramidal cells caused them to fire spike doublets or short bursts at gamma frequencies, thereby slowing the population rhythm. Rhythmic synchronized IPSPs allowed the pyramidal cells to encode their mean excitation by their phase of firing relative to the population waves. Recurrent excitation between the pyramidal cells could modify the phase of firing relative to the population waves. Our model suggests that pools of synaptically interconnected inhibitory cells are sufficient to produce gamma frequency rhythms, but the network behavior can be modified by participation of pyramidal cells.

journal_name

J Comput Neurosci

authors

Traub RD,Jefferys JG,Whittington MA

doi

10.1023/a:1008839312043

subject

Has Abstract

pub_date

1997-04-01 00:00:00

pages

141-50

issue

2

eissn

0929-5313

issn

1573-6873

journal_volume

4

pub_type

杂志文章
  • A neuronal network model of primary visual cortex explains spatial frequency selectivity.

    abstract::We address how spatial frequency selectivity arises in Macaque primary visual cortex (V1) by simulating V1 with a large-scale network model consisting of O(10(4)) excitatory and inhibitory integrate-and-fire neurons with realistic synaptic conductances. The new model introduces variability of the widths of subregions ...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-008-0110-x

    authors: Zhu W,Shelley M,Shapley R

    更新日期:2009-04-01 00:00:00

  • Nonlinear time series analysis of jerk congenital nystagmus.

    abstract::Nonlinear dynamics provides a complementary framework to control theory for the quantitative analysis of the oculomotor control system. This paper presents a number of findings relating to the aetiology and mechanics of the pathological ocular oscillation jerk congenital nystagmus (jerk CN). A range of time series ana...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-006-7816-4

    authors: Akman OE,Broomhead DS,Clement RA,Abadi RV

    更新日期:2006-10-01 00:00:00

  • Initiation and propagation of a neuronal intracellular calcium wave.

    abstract::The ability to image calcium movement within individual neurons inspires questions of functionality including whether calcium entry into the nucleus is related to genetic regulation for phenomena such as long term potentiation. Calcium waves have been initiated in hippocampal pyramidal cells with glutmatergic signals ...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-008-0082-x

    authors: Peercy BE

    更新日期:2008-10-01 00:00:00

  • Using extracellular action potential recordings to constrain compartmental models.

    abstract::We investigate the use of extracellular action potential (EAP) recordings for biophysically faithful compartmental models. We ask whether constraining a model to fit the EAP is superior to matching the intracellular action potential (IAP). In agreement with previous studies, we find that the IAP method under-constrain...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-006-0018-2

    authors: Gold C,Henze DA,Koch C

    更新日期:2007-08-01 00:00:00

  • Integrating top-down and bottom-up sensory processing by somato-dendritic interactions.

    abstract::The classical view of cortical information processing is that of a bottom-up process in a feedforward hierarchy. However, psychophysical, anatomical, and physiological evidence suggests that top-down effects play a crucial role in the processing of input stimuli. Not much is known about the neural mechanisms underlyin...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1023/a:1008973215925

    authors: Siegel M,Körding KP,König P

    更新日期:2000-03-01 00:00:00

  • Reliability of signal transmission in stochastic nerve axon equations.

    abstract::We introduce a method for computing probabilities for spontaneous activity and propagation failure of the action potential in spatially extended, conductance-based neuronal models subject to noise, based on statistical properties of the membrane potential. We compare different estimators with respect to the quality of...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-015-0586-0

    authors: Sauer M,Stannat W

    更新日期:2016-02-01 00:00:00

  • On the dynamics of electrically-coupled neurons with inhibitory synapses.

    abstract::We study the dynamics and bifurcations of noise-free neurons coupled by gap junctions and inhibitory synapses, using both delayed delta functions and alpha functions to model the latter. We focus on the case of two cells, as in the studies of Chow and Kopell (2000) and Lewis and Rinzel (2003), but also show that stabl...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-006-9676-3

    authors: Gao J,Holmes P

    更新日期:2007-02-01 00:00:00

  • Crossover inhibition in the retina: circuitry that compensates for nonlinear rectifying synaptic transmission.

    abstract::In the mammalian retina, complementary ON and OFF visual streams are formed at the bipolar cell dendrites, then carried to amacrine and ganglion cells via nonlinear excitatory synapses from bipolar cells. Bipolar, amacrine and ganglion cells also receive a nonlinear inhibitory input from amacrine cells. The most commo...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-009-0170-6

    authors: Molnar A,Hsueh HA,Roska B,Werblin FS

    更新日期:2009-12-01 00:00:00

  • Quantitative estimate of the information relayed by the Schaffer collaterals.

    abstract::Within the theory that describes the hippocampus as a device for the on-line storage of complex memories, the crucial autoassociative operations are ascribed mainly to the recurrent CA3 network. The CA3-to-CA1 connections may still be important, both in completing information retrieval and in re-expanding, with minima...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/BF00961437

    authors: Treves A

    更新日期:1995-09-01 00:00:00

  • Impact of network topology on inference of synaptic connectivity from multi-neuronal spike data simulated by a large-scale cortical network model.

    abstract::Many mechanisms of neural processing rely critically upon the synaptic connectivity between neurons. As our ability to simultaneously record from large populations of neurons expands, the ability to infer network connectivity from this data has become a major goal of computational neuroscience. To address this issue, ...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-013-0443-y

    authors: Kobayashi R,Kitano K

    更新日期:2013-08-01 00:00:00

  • Modeling Hermissenda: I. Differential contributions of IA and IC to type-B cell plasticity.

    abstract::We developed a multicompartmental Hodgkin-Huxley model of the Hermissenda type-B photoreceptor and used it to address the relative contributions of reductions of two K+ currents, IA and IC, to changes in cellular excitability and synaptic strength that occur in these cells after associative learning. We found that red...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/BF00160809

    authors: Fost JW,Clark GA

    更新日期:1996-06-01 00:00:00

  • On the sensitive dependence on initial conditions of the dynamics of networks of spiking neurons.

    abstract::We have previously formulated an abstract dynamical system for networks of spiking neurons and derived a formal result that identifies the criterion for its dynamics, without inputs, to be "sensitive to initial conditions". Since formal results are applicable only to the extent to which their assumptions are valid, we...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-006-7188-9

    authors: Banerjee A

    更新日期:2006-06-01 00:00:00

  • Modeling the influence of optic flow on grid cell firing in the absence of other cues1.

    abstract::Information from the vestibular, sensorimotor, or visual systems can affect the firing of grid cells recorded in entorhinal cortex of rats. Optic flow provides information about the rat's linear and rotational velocity and, thus, could influence the firing pattern of grid cells. To investigate this possible link, we m...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-012-0396-6

    authors: Raudies F,Mingolla E,Hasselmo ME

    更新日期:2012-12-01 00:00:00

  • Early cortical orientation selectivity: how fast inhibition decodes the order of spike latencies.

    abstract::Following a flashed stimulus, I show that a simple neurophysiological mechanism in the primary visual system can generate orientation selectivity based on the first incoming spikes. A biological model of the lateral geniculate nucleus generates an asynchronous wave of spikes, with the most strongly activated neurons f...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1023/a:1027420012134

    authors: Delorme A

    更新日期:2003-11-01 00:00:00

  • Reduced order models of myelinated axonal compartments.

    abstract::The paper presents a hierarchical series of computational models for myelinated axonal compartments. Three classes of models are considered, either with distributed parameters (2.5D EQS-ElectroQuasi Static, 1D TL-Transmission Lines) or with lumped parameters (0D). They are systematically analyzed with both analytical ...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-019-00726-4

    authors: Ioan D,Bărbulescu R,Silveira LM,Ciuprina G

    更新日期:2019-12-01 00:00:00

  • Computational principles underlying the recognition of acoustic signals in insects.

    abstract::Many animals produce pulse-like signals during acoustic communication. These signals exhibit structure on two time scales: they consist of trains of pulses that are often broadcast in packets-so called chirps. Temporal parameters of the pulse and of the chirp are decisive for female preference. Despite these signals b...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-013-0441-0

    authors: Clemens J,Hennig RM

    更新日期:2013-08-01 00:00:00

  • Hot coffee: associative memory with bump attractor cell assemblies of spiking neurons.

    abstract::Networks of spiking neurons can have persistently firing stable bump attractors to represent continuous spaces (like temperature). This can be done with a topology with local excitatory synapses and local surround inhibitory synapses. Activating large ranges in the attractor can lead to multiple bumps, that show repel...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-020-00758-1

    authors: Huyck CR,Vergani AA

    更新日期:2020-08-01 00:00:00

  • Bayesian analysis of the kinetics of quantal transmitter secretion at the neuromuscular junction.

    abstract::The timing of transmitter release from nerve endings is considered nowadays as one of the factors determining the plasticity and efficacy of synaptic transmission. In the neuromuscular junction, the moments of release of individual acetylcholine quanta are related to the synaptic delays of uniquantal endplate currents...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-015-0567-3

    authors: Saveliev A,Khuzakhmetova V,Samigullin D,Skorinkin A,Kovyazina I,Nikolsky E,Bukharaeva E

    更新日期:2015-10-01 00:00:00

  • Motor pattern selection by combinatorial code of interneuronal pathways.

    abstract::We use a modeling approach to examine ideas derived from physiological network analyses, pertaining to the switch of a motor control network between two opposite control modes. We studied the femur-tibia joint control system of the insect leg, and its switch between resistance reflex in posture control and "active rea...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-008-0093-7

    authors: Stein W,Straub O,Ausborn J,Mader W,Wolf H

    更新日期:2008-12-01 00:00:00

  • Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation.

    abstract::Deep brain stimulation (DBS) of the subthlamic nucleus (STN) represents an effective treatment for medically refractory Parkinson's disease; however, understanding of its effects on basal ganglia network activity remains limited. We constructed a computational model of the subthalamopallidal network, trained it to fit...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-010-0225-8

    authors: Hahn PJ,McIntyre CC

    更新日期:2010-06-01 00:00:00

  • Membrane potential resonance in non-oscillatory neurons interacts with synaptic connectivity to produce network oscillations.

    abstract::Several neuron types have been shown to exhibit (subthreshold) membrane potential resonance (MPR), defined as the occurrence of a peak in their voltage amplitude response to oscillatory input currents at a preferred (resonant) frequency. MPR has been investigated both experimentally and theoretically. However, whether...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-019-00710-y

    authors: Bel A,Rotstein HG

    更新日期:2019-04-01 00:00:00

  • Differential control of active and silent phases in relaxation models of neuronal rhythms.

    abstract::Rhythmic bursting activity, found in many biological systems, serves a variety of important functions. Such activity is composed of episodes, or bursts (the active phase, AP) that are separated by quiescent periods (the silent phase, SP). Here, we use mean field, firing rate models of excitatory neural network activit...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-006-8862-7

    authors: Tabak J,O'Donovan MJ,Rinzel J

    更新日期:2006-12-01 00:00:00

  • No parallel fiber volleys in the cerebellar cortex: evidence from cross-correlation analysis between Purkinje cells in a computer model and in recordings from anesthetized rats.

    abstract::Purkinje cells aligned on the medio-lateral axis share a large proportion of their approximately 175,000 parallel fiber inputs. This arrangement has led to the hypothesis that movement timing is coded in the cerebellum by beams of synchronously active parallel fibers. In computer simulations I show that such synchrono...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1023/a:1023217111784

    authors: Jaeger D

    更新日期:2003-05-01 00:00:00

  • Encoding whisker deflection velocity within the rodent barrel cortex using phase-delayed inhibition.

    abstract::The primary sensory feature represented within the rodent barrel cortex is the velocity with which a whisker has been deflected. Whisker deflection velocity is encoded within the thalamus via population synchrony (higher deflection velocities entail greater synchrony among the corresponding thalamic population). Thala...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-014-0535-3

    authors: Liu R,Patel M,Joshi B

    更新日期:2014-12-01 00:00:00

  • A model of selective processing of auditory-nerve inputs by stellate cells of the antero-ventral cochlear nucleus.

    abstract::Stellate cells in the cat antero-ventral cochlear nucleus (AVCN) maintain a robust rate-place representation of vowel spectra over a wide range of stimulus levels. This rate-place representation resembles that of low threshold, high spontaneous rate (SR) auditory nerve fibers (ANFs) at low stimulus levels, and that of...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章,评审

    doi:10.1007/BF00961733

    authors: Lai YC,Winslow RL,Sachs MB

    更新日期:1994-08-01 00:00:00

  • Spiking neural circuits with dendritic stimulus processors : encoding, decoding, and identification in reproducing kernel Hilbert spaces.

    abstract::We present a multi-input multi-output neural circuit architecture for nonlinear processing and encoding of stimuli in the spike domain. In this architecture a bank of dendritic stimulus processors implements nonlinear transformations of multiple temporal or spatio-temporal signals such as spike trains or auditory and ...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-014-0522-8

    authors: Lazar AA,Slutskiy YB

    更新日期:2015-02-01 00:00:00

  • Modeling synchronous theta activity in the medial septum: key role of local communications between different cell populations.

    abstract::It is widely believed that the theta rhythm in the hippocampus is caused by the rhythmic input from the medial septum-diagonal band of Broca (MSDB). The main MSDB output is formed by GABAergic projection neurons which are divided into two subpopulations and fire at different phases of the hippocampal theta rhythm. The...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-015-0564-6

    authors: Mysin IE,Kitchigina VF,Kazanovich Y

    更新日期:2015-08-01 00:00:00

  • A continuous attractor network model without recurrent excitation: maintenance and integration in the head direction cell system.

    abstract::Motivated by experimental observations of the head direction system, we study a three population network model that operates as a continuous attractor network. This network is able to store in a short-term memory an angular variable (the head direction) as a spatial profile of activity across neurons in the absence of...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-005-6559-y

    authors: Boucheny C,Brunel N,Arleo A

    更新日期:2005-03-01 00:00:00

  • The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: II. Active membrane properties.

    abstract::The voltage-gated currents in the fly lobula plate tangential cells were examined using the switched electrode voltage clamp technique. In CH cells, two currents were identified (Figs. 1, 2): a slow calcium inward current and a delayed rectifying, noninactivating potassium outward current. HS and VS cells appear to po...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1023/a:1008804117334

    authors: Haag J,Theunissen F,Borst A

    更新日期:1997-11-01 00:00:00

  • An improved parameter estimation method for Hodgkin-Huxley models.

    abstract::We consider whole-cell voltage-clamp data of isolated currents characterized by the Hodgkin-Huxley paradigm. We examine the errors associated with the typical parameter estimation method for these data and show them to be unsatisfactorally large especially if the time constants of activation and inactivation are not s...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1023/a:1008880518515

    authors: Willms AR,Baro DJ,Harris-Warrick RM,Guckenheimer J

    更新日期:1999-03-01 00:00:00