Anthropogenic Seed Dispersal: Rethinking the Origins of Plant Domestication.

Abstract:

:It is well documented that ancient sickle harvesting led to tough rachises, but the other seed dispersal properties in crop progenitors are rarely discussed. The first steps toward domestication are evolutionary responses for the recruitment of humans as dispersers. Seed dispersal-based mutualism evolved from heavy human herbivory or seed predation. Plants that evolved traits to support human-mediated seed dispersal express greater fitness in increasingly anthropogenic ecosystems. The loss of dormancy, reduction in seed coat thickness, increased seed size, pericarp density, and sugar concentration all led to more-focused seed dispersal through seed saving and sowing. Some of the earliest plants to evolve domestication traits had weak seed dispersal processes in the wild, often due to the extinction of animal dispersers or short-distance mechanical dispersal.

journal_name

Trends Plant Sci

journal_title

Trends in plant science

authors

Spengler RN 3rd

doi

10.1016/j.tplants.2020.01.005

subject

Has Abstract

pub_date

2020-04-01 00:00:00

pages

340-348

issue

4

eissn

1360-1385

issn

1878-4372

pii

S1360-1385(20)30022-4

journal_volume

25

pub_type

杂志文章,评审
  • Dissecting calcium oscillators in plant cells.

    abstract::To understand Ca2+ signaling, we need to identify all the Ca2+ transporters and their regulatory components. The first Ca2+ transporters to be cloned from plants and shown to have regulated activity were calmodulin-dependent Ca2+ -pumps. The regulation of these pumps suggests that being able to change the rate of Ca2+...

    journal_title:Trends in plant science

    pub_type: 新闻

    doi:10.1016/s1360-1385(01)02023-4

    authors: Harper JF

    更新日期:2001-09-01 00:00:00

  • Be more specific! Laser-assisted microdissection of plant cells.

    abstract::Laser-assisted microdissection (LAM) is a powerful tool for isolating specific tissues, cell types and even organelles from sectioned biological specimen in a manner conducive to the extraction of RNA, DNA or protein. LAM, which is an established technique in many areas of biology, has now been successfully adapted fo...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/j.tplants.2005.06.006

    authors: Day RC,Grossniklaus U,Macknight RC

    更新日期:2005-08-01 00:00:00

  • Aluminium tolerance in plants and the complexing role of organic acids.

    abstract::The aluminium cation Al(3+) is toxic to many plants at micromolar concentrations. A range of plant species has evolved mechanisms that enable them to grow on acid soils where toxic concentrations of Al(3+) can limit plant growth. Organic acids play a central role in these aluminium tolerance mechanisms. Some plants de...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/s1360-1385(01)01961-6

    authors: Ma JF,Ryan PR,Delhaize E

    更新日期:2001-06-01 00:00:00

  • The Algal Revolution.

    abstract::Algae are (mostly) photosynthetic eukaryotes that occupy multiple branches of the tree of life, and are vital for planet function and health. In this review, we highlight a transformative period in studies of the evolution and functioning of this extraordinary group of organisms and their potential for novel applicati...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2017.05.005

    authors: Brodie J,Chan CX,De Clerck O,Cock JM,Coelho SM,Gachon C,Grossman AR,Mock T,Raven JA,Smith AG,Yoon HS,Bhattacharya D

    更新日期:2017-08-01 00:00:00

  • Salicylic acid-induced resistance to viruses and other pathogens: a parting of the ways?

    abstract::Resistance genes allow plants to recognize specific pathogens. Recognition results in the activation of a variety of defence responses, including localized programmed cell death (the hypersensitive response), synthesis of pathogenesis-related proteins and induction of systemic acquired resistance. These responses are ...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/s1360-1385(99)01390-4

    authors: Murphy AM,Chivasa S,Singh DP,Carr JP

    更新日期:1999-04-01 00:00:00

  • Plant-Pesticide Interactions and the Global Chloromethane Budget.

    abstract::Ecological, signaling, metabolic, and chemical processes in plant-microorganism systems and in plant-derived material may link the use of chlorinated pesticides in the environment with plant chloromethane emission. This neglected factor should be taken into account to assess global planetary budgets of chloromethane a...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/j.tplants.2017.12.001

    authors: Bringel F,Couée I

    更新日期:2018-02-01 00:00:00

  • Controlling transgene integration in plants.

    abstract::The creation of transgenic plants has brought significant advances to light in plant biotechnology. However, in spite of the fact that transgenic plants are beginning to be grown widely, controlled transgene integration into a pre-determined site remains to be achieved. Here we suggest two alternative approaches for g...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/s1360-1385(01)01890-8

    authors: Kumar S,Fladung M

    更新日期:2001-04-01 00:00:00

  • Switching on plant genes by external chemical signals.

    abstract::During the past decade there has been rapidly increasing interest in the role of plant volatiles in insect-plant interactions and the induction of plant defence systems by both pathogens and herbivores. Scientists are striving to link the proximate studies elucidating pathways and genes with the ultimate adaptive stud...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/s1360-1385(01)01899-4

    authors: Pickett JA,Poppy GM

    更新日期:2001-04-01 00:00:00

  • Arabidopsis PPP family of serine/threonine phosphatases.

    abstract::Serine/threonine-specific phosphoprotein phosphatases (PPPs) are ubiquitous enzymes in all eukaryotes, but their regulatory functions are largely unknown in higher plants. The Arabidopsis genome encodes 26 PPP catalytic subunits related to type 1, type 2A and so-called novel phosphatases, including four plant-specific...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2007.03.003

    authors: Farkas I,Dombrádi V,Miskei M,Szabados L,Koncz C

    更新日期:2007-04-01 00:00:00

  • Plant meiosis: the means to 1N.

    abstract::Meiosis is pivotal in the life history of plants. In addition to providing an opportunity for genetic reassortment, it marks the transition from diploid sporophyte to haploid gametophyte. Recent molecular data suggest that, like animals, plants possess a common set of genes (also conserved in eukaryotic microorganisms...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/s1360-1385(00)01861-6

    authors: Bhatt AM,Canales C,Dickinson HG

    更新日期:2001-03-01 00:00:00

  • Nitrogen Systemic Signaling: From Symbiotic Nodulation to Root Acquisition.

    abstract::Plant nutrient acquisition is tightly regulated by resource availability and metabolic needs, implying the existence of communication between roots and shoots to ensure their integration at the whole-plant level. Here, we focus on systemic signaling pathways controlling nitrogen (N) nutrition, achieved both by the roo...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2020.11.009

    authors: Gautrat P,Laffont C,Frugier F,Ruffel S

    更新日期:2020-12-23 00:00:00

  • JAZing up jasmonate signaling.

    abstract::Recent discoveries show that jasmonate ZIM-domain (JAZ) transcriptional repressors are key regulators of jasmonate hormonal response. Jasmonate promotes interaction between JAZ proteins and the SCF(COI1) ubiquitin ligase, leading to JAZ degradation via the 26S proteasome in Arabidopsis thaliana. Elimination of JAZ rep...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2007.11.011

    authors: Staswick PE

    更新日期:2008-02-01 00:00:00

  • Plasticity of specialized metabolism as mediated by dynamic metabolons.

    abstract::The formation of specialized metabolites enables plants to respond to biotic and abiotic stresses, but requires the sequential action of multiple enzymes. To facilitate swift production and to avoid leakage of potentially toxic and labile intermediates, many of the biosynthetic pathways are thought to organize in mult...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2014.11.002

    authors: Laursen T,Møller BL,Bassard JE

    更新日期:2015-01-01 00:00:00

  • Plant stem cells carve their own niche.

    abstract::Stem cells are the precursors of differentiated cells and are, thus, indispensable for growth and development in plants and animals. Stem cells from both types of organisms share the fundamental features of a capacity for self-renewal and an ability to generate differentiated cells. The maintenance of stem cells in bo...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2006.03.004

    authors: Singh MB,Bhalla PL

    更新日期:2006-05-01 00:00:00

  • Woody Plant Declines. What's Wrong with the Microbiome?

    abstract::Woody plant (WP) declines have multifactorial determinants as well as a biological and economic reality. The vascular system of WPs involved in the transport of carbon, nitrogen, and water from sources to sinks has a seasonal activity, which places it at a central position for mediating plant-environment interactions ...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2019.12.024

    authors: Bettenfeld P,Fontaine F,Trouvelot S,Fernandez O,Courty PE

    更新日期:2020-04-01 00:00:00

  • Evolution of jasmonate and salicylate signal crosstalk.

    abstract::The evolution of land plants approximately 470 million years ago created a new adaptive zone for natural enemies (attackers) of plants. In response to attack, plants evolved highly effective, inducible defense systems. Two plant hormones modulating inducible defenses are salicylic acid (SA) and jasmonic acid (JA). Cur...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2012.02.010

    authors: Thaler JS,Humphrey PT,Whiteman NK

    更新日期:2012-05-01 00:00:00

  • Plant salt tolerance.

    abstract::Soil salinity is a major abiotic stress in plant agriculture worldwide. This has led to research into salt tolerance with the aim of improving crop plants. However, salt tolerance might have much wider implications because transgenic salt-tolerant plants often also tolerate other stresses including chilling, freezing,...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/s1360-1385(00)01838-0

    authors: Zhu JK

    更新日期:2001-02-01 00:00:00

  • Tall tales from sly dwarves: novel functions of gibberellins in plant development.

    abstract::Gibberellins (GAs) are endogenous hormones controlling numerous aspects of plant growth and development. Our present understanding of GA physiology is based largely on genetic analysis in model plants such as Arabidopsis. In spite of the success of this approach, the discovery of additional physiological roles for GAs...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2005.01.007

    authors: Swain SM,Singh DP

    更新日期:2005-03-01 00:00:00

  • COPII-mediated traffic in plants.

    abstract::The secretory pathway encloses functionally interlinked organelles for the synthesis and deposition of most of the building blocks of eukaryotic cells, such as lipids, proteins and sugars. The coat protein complex II (COPII) is a specialized protein complex for the transport between secretory organelles, specifically ...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2010.05.010

    authors: Marti L,Fornaciari S,Renna L,Stefano G,Brandizzi F

    更新日期:2010-09-01 00:00:00

  • Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions.

    abstract::Plant photosynthesis performs the remarkable feat of converting light energy into usable chemical forms, which involves taming highly reactive intermediates without harming plant cells. This requires an apparatus that is not only efficient and robust but also flexible in its responses to changing environmental conditi...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2004.05.001

    authors: Kramer DM,Avenson TJ,Edwards GE

    更新日期:2004-07-01 00:00:00

  • Evolutionary and Epidemiological Implications of Multiple Infection in Plants.

    abstract::Recent methodological advances have uncovered tremendous microbial diversity cohabiting in the same host plant, and many of these microbes cause disease. In this review we highlight how the presence of other pathogen species, or other pathogen genotypes, within a plant can affect key components of host-pathogen intera...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2015.10.014

    authors: Tollenaere C,Susi H,Laine AL

    更新日期:2016-01-01 00:00:00

  • Revealing micro-RNAs in plants.

    abstract::Recent work has resulted in the identification of >100 endogenous non-coding small RNA molecules in plants. These micro-RNAs (miRNAs) have the capacity to regulate a range of predicted target mRNAs, many of which are transcription factors involved in the control of meristem identity. Mutants defective in either CARPEL...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/s1360-1385(02)02361-0

    authors: Jones L

    更新日期:2002-11-01 00:00:00

  • Sensing Danger: Key to Activating Plant Immunity.

    abstract::In both plants and animals, defense against pathogens relies on a complex surveillance system for signs of danger. Danger signals may originate from the infectious agent or from the host itself. Immunogenic plant host factors can be roughly divided into two categories: molecules which are passively released upon cell ...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2017.07.005

    authors: Gust AA,Pruitt R,Nürnberger T

    更新日期:2017-09-01 00:00:00

  • Weed genomics: new tools to understand weed biology.

    abstract::In spite of the large yield losses that weeds inflict on crops, we know little about the genomics of economically important weed species. Comparative genomics between plant model species and weeds, map-based approaches, genomic sequencing and functional genomics can play vital roles in understanding and dissecting wee...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2004.06.003

    authors: Basu C,Halfhill MD,Mueller TC,Stewart CN Jr

    更新日期:2004-08-01 00:00:00

  • Sugar transporters in higher plants--a diversity of roles and complex regulation.

    abstract::Sugar-transport proteins play a crucial role in the cell-to-cell and long-distance distribution of sugars throughout the plant. In the past decade, genes encoding sugar transporters (or carriers) have been identified, functionally expressed in heterologous systems, and studied with respect to their spatial and tempora...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/s1360-1385(00)01681-2

    authors: Williams LE,Lemoine R,Sauer N

    更新日期:2000-07-01 00:00:00

  • Pectin methylesterases: cell wall enzymes with important roles in plant physiology.

    abstract::Pectin methylesterases catalyse the demethylesterification of cell wall polygalacturonans. In dicot plants, these ubiquitous cell wall enzymes are involved in important developmental processes including cellular adhesion and stem elongation. Here, I highlight recent studies that challenge the accepted views of the mec...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/s1360-1385(01)02045-3

    authors: Micheli F

    更新日期:2001-09-01 00:00:00

  • Plant infection and the establishment of fungal biotrophy.

    abstract::To exploit plants as living substrates, biotrophic fungi have evolved remarkable variations of their tubular cells, the hyphae. They form infection structures such as appressoria, penetration hyphae and infection hyphae to invade the plant with minimal damage to host cells. To establish compatibility with the host, co...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/s1360-1385(02)02297-5

    authors: Mendgen K,Hahn M

    更新日期:2002-08-01 00:00:00

  • Molecular mechanisms of self-recognition in Brassica self-incompatibility.

    abstract::Plants have mechanisms to promote outbreeding and thereby to increase their genetic diversity. In species that are self-incompatible, self-pollen is rejected by the stigma. This mechanism has been the subject of intense study for many years and, in the past two years, significant progress has been made in identifying ...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/s1360-1385(00)01759-3

    authors: Brugière N,Rothstein SJ,Cui Y

    更新日期:2000-10-01 00:00:00

  • Sorting of proteins to storage vacuoles: how many mechanisms?

    abstract::Vacuoles receive their proteins through the secretory pathway, this requires protein sorting signals and molecular machineries that, until recently, have been believed to be markedly distinct for lytic and storage vacuoles. However, new biochemical, morphological and genetic data indicate that the only known class of ...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2005.05.001

    authors: Vitale A,Hinz G

    更新日期:2005-07-01 00:00:00

  • Identifying the molecular basis of QTLs: eQTLs add a new dimension.

    abstract::Natural genetic variation within plant species is at the core of plant science ranging from agriculture to evolution. Whereas much progress has been made in mapping quantitative trait loci (QTLs) controlling this natural variation, the elucidation of the underlying molecular mechanisms has remained a bottleneck. Recen...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2007.11.008

    authors: Hansen BG,Halkier BA,Kliebenstein DJ

    更新日期:2008-02-01 00:00:00