Monstrous Mycobacterial Lipids.

Abstract:

:When it comes to lipid diversity, no bacterial genus approaches Mycobacterium. In this issue of Cell Chemical Biology, Burbaud et al. (2016) provide a multi-genic working model for the biosynthesis of trehalose polyphleate (TPP), one of the largest known lipids in mycobacteria. They demonstrate that this lipid is made by diverse mycobacterial species, including those of medical importance.

journal_name

Cell Chem Biol

journal_title

Cell chemical biology

authors

Seeliger J,Moody DB

doi

10.1016/j.chembiol.2016.02.004

subject

Has Abstract

pub_date

2016-02-18 00:00:00

pages

207-209

issue

2

eissn

2451-9456

issn

2451-9448

pii

S2451-9456(16)30014-9

journal_volume

23

pub_type

评论,杂志文章
  • Privileged Electrophile Sensors: A Resource for Covalent Drug Development.

    abstract::This Perspective delineates how redox signaling affects the activity of specific enzyme isoforms and how this property may be harnessed for rational drug design. Covalent drugs have resurged in recent years and several reports have extolled the general virtues of developing irreversible inhibitors. Indeed, many modern...

    journal_title:Cell chemical biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.chembiol.2017.05.023

    authors: Long MJC,Aye Y

    更新日期:2017-07-20 00:00:00

  • Detection of Low-Abundance Metabolites in Live Cells Using an RNA Integrator.

    abstract::Genetically encoded biosensors are useful tools for detecting the presence and levels of diverse biomolecules in living cells. However, low-abundance targets are difficult to detect because they are often unable to bind and activate enough biosensors to detect using standard microscopic imaging approaches. Here we des...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2019.01.005

    authors: You M,Litke JL,Wu R,Jaffrey SR

    更新日期:2019-04-18 00:00:00

  • Membrane-Active Rhamnolipids Overcome Aminoglycoside Resistance.

    abstract::In this issue of Cell Chemical Biology, Radlinski et al. (2019) identify Pseudomonas-derived rhamnolipids that potentiate aminoglycoside antibiotics in the eradication of antibiotic-tolerant bacterial phenotypes. Microbial physiological and mechanistic studies indicate that rhamnolipids permeabilize S. aureus membrane...

    journal_title:Cell chemical biology

    pub_type: 评论,杂志文章

    doi:10.1016/j.chembiol.2019.09.015

    authors: Yarlagadda V,Wright GD

    更新日期:2019-10-17 00:00:00

  • The Convergence of Stem Cell Technologies and Phenotypic Drug Discovery.

    abstract::Recent advances in induced pluripotent stem cell technologies and phenotypic screening shape the future of bioactive small-molecule discovery. In this review we analyze the impact of small-molecule phenotypic screens on drug discovery as well as on the investigation of human development and disease biology. We further...

    journal_title:Cell chemical biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.chembiol.2019.05.007

    authors: Friese A,Ursu A,Hochheimer A,Schöler HR,Waldmann H,Bruder JM

    更新日期:2019-08-15 00:00:00

  • Investigation of Penicillin Binding Protein (PBP)-like Peptide Cyclase and Hydrolase in Surugamide Non-ribosomal Peptide Biosynthesis.

    abstract::Non-ribosomal peptides (NRPs) are biosynthesized on non-ribosomal peptides synthetase (NRPS) complexes, of which a C-terminal releasing domain commonly offloads the products. Interestingly, a dedicated releasing domain is absent in surugamides (SGM) NRPS, which directs the biosynthesis of cyclic octapeptides, SGM-A to...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2019.02.010

    authors: Zhou Y,Lin X,Xu C,Shen Y,Wang SP,Liao H,Li L,Deng H,Lin HW

    更新日期:2019-05-16 00:00:00

  • Combined Proteomic and In Silico Target Identification Reveal a Role for 5-Lipoxygenase in Developmental Signaling Pathways.

    abstract::Identification and validation of the targets of bioactive small molecules identified in cell-based screening is challenging and often meets with failure, calling for the development of new methodology. We demonstrate that a combination of chemical proteomics with in silico target prediction employing the SPiDER method...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2018.05.016

    authors: Brand S,Roy S,Schröder P,Rathmer B,Roos J,Kapoor S,Patil S,Pommerenke C,Maier T,Janning P,Eberth S,Steinhilber D,Schade D,Schneider G,Kumar K,Ziegler S,Waldmann H

    更新日期:2018-09-20 00:00:00

  • "Expand and Click": A New Method for Labeling HIV-1 Envelope Glycoproteins.

    abstract::In this issue of Cell Chemical Biology, Sakin et al. (2017) investigate the nanoscale behavior of the HIV-1 envelope (Env) glycoprotein complex by using genetic code expansion, bioorthogonal amino acids, synthetic dyes, and click chemistry. This minimally invasive approach allows the measurement of native Env cellular...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2017.05.006

    authors: Fernandez MV,Freed EO

    更新日期:2017-05-18 00:00:00

  • Probing Substrate Preferences of Depalmitoylases.

    abstract::Depalmitoylases play a crucial role in regulating dynamic protein palmitoylation. In this issue of Cell Chemical Biology, Amara et al. (2019) present fluorogenic peptide probes to analyze the activity and substrate specificity of depalmitoylases and uncover that the amino acid residues distal to the palmitoylation sit...

    journal_title:Cell chemical biology

    pub_type: 评论,杂志文章

    doi:10.1016/j.chembiol.2018.12.008

    authors: Chen B,Wu X

    更新日期:2019-01-17 00:00:00

  • Concise Chemoenzymatic Total Synthesis and Identification of Cellular Targets of Cepafungin I.

    abstract::The natural product cepafungin I was recently reported to be one of the most potent covalent inhibitors of the 20S proteasome core particle through a series of in vitro activity assays. Here, we report a short chemoenzymatic total synthesis of cepafungin I featuring the use of a regioselective enzymatic oxidation to p...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2020.07.012

    authors: Amatuni A,Shuster A,Adibekian A,Renata H

    更新日期:2020-10-15 00:00:00

  • Lanthanide-Based Optical Probes of Biological Systems.

    abstract::The unique photophysical properties of lanthanides, such as europium, terbium, and ytterbium, make them versatile molecular probes of biological systems. In particular, their long-lived photoluminescence, narrow bandwidth emissions, and large Stokes shifts enable experiments that are infeasible with organic fluorophor...

    journal_title:Cell chemical biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.chembiol.2020.07.009

    authors: Cho U,Chen JK

    更新日期:2020-08-20 00:00:00

  • Hit Triage and Validation in Phenotypic Screening: Considerations and Strategies.

    abstract::The promise of phenotypic screening resides in its track record of novel biology and first-in-class therapies. However, challenges stemming from major differences between target-based and phenotypic screening do exist. These challenges prompted us to rethink the critical stage of hit triage and validation on the road ...

    journal_title:Cell chemical biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.chembiol.2020.08.009

    authors: Vincent F,Loria PM,Weston AD,Steppan CM,Doyonnas R,Wang YM,Rockwell KL,Peakman MC

    更新日期:2020-11-19 00:00:00

  • A Split-Luciferase-Based Trimer Formation Assay as a High-throughput Screening Platform for Therapeutics in Alport Syndrome.

    abstract::Alport syndrome is a hereditary glomerular disease caused by mutation in type IV collagen α3-α5 chains (α3-α5(IV)), which disrupts trimerization, leading to glomerular basement membrane degeneration. Correcting the trimerization of α3/α4/α5 chain is a feasible therapeutic approach, but is hindered by lack of informati...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2018.02.003

    authors: Omachi K,Kamura M,Teramoto K,Kojima H,Yokota T,Kaseda S,Kuwazuru J,Fukuda R,Koyama K,Matsuyama S,Motomura K,Shuto T,Suico MA,Kai H

    更新日期:2018-05-17 00:00:00

  • An Isoform-Selective Modulator of Cryptochrome 1 Regulates Circadian Rhythms in Mammals.

    abstract::Cryptochrome 1 (CRY1) and CRY2 are core regulators of the circadian clock, and the development of isoform-selective modulators is important for the elucidation of their redundant and distinct functions. Here, we report the identification and functional characterization of a small-molecule modulator of the mammalian ci...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2020.05.008

    authors: Miller S,Aikawa Y,Sugiyama A,Nagai Y,Hara A,Oshima T,Amaike K,Kay SA,Itami K,Hirota T

    更新日期:2020-09-17 00:00:00

  • A ZDHHC5-GOLGA7 Protein Acyltransferase Complex Promotes Nonapoptotic Cell Death.

    abstract::Lethal small molecules are useful probes to discover and characterize novel cell death pathways and biochemical mechanisms. Here we report that the synthetic oxime-containing small molecule caspase-independent lethal 56 (CIL56) induces an unconventional form of nonapoptotic cell death distinct from necroptosis, ferrop...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2019.09.014

    authors: Ko PJ,Woodrow C,Dubreuil MM,Martin BR,Skouta R,Bassik MC,Dixon SJ

    更新日期:2019-12-19 00:00:00

  • Engineered Proteins Program Mammalian Cells to Target Inflammatory Disease Sites.

    abstract::Disease sites in atherosclerosis and cancer feature cell masses (e.g., plaques/tumors), a low pH extracellular microenvironment, and various pro-inflammatory cytokines such as tumor necrosis factor α (TNFα). The ability to engineer a cell to seek TNFα sources allows for targeted therapeutic delivery. To accomplish thi...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2017.05.008

    authors: Qudrat A,Mosabbir AA,Truong K

    更新日期:2017-06-22 00:00:00

  • Proteome-wide Profiling of Clinical PARP Inhibitors Reveals Compound-Specific Secondary Targets.

    abstract::Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are a promising class of targeted cancer drugs, but their individual target profiles beyond the PARP family, which could result in differential clinical use or toxicity, are unknown. Using an unbiased, mass spectrometry-based chemical proteomics approach, we genera...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2016.10.011

    authors: Knezevic CE,Wright G,Rix LLR,Kim W,Kuenzi BM,Luo Y,Watters JM,Koomen JM,Haura EB,Monteiro AN,Radu C,Lawrence HR,Rix U

    更新日期:2016-12-22 00:00:00

  • Conformation Selective Antibody Enables Genome Profiling and Leads to Discovery of Parallel G-Quadruplex in Human Telomeres.

    abstract::G-quadruplexes are specialized secondary structures in nucleic acids that possess significant conformational polymorphisms. The precise G-quadruplex conformations in vivo and their relevance to biological functions remain controversial and unclear, especially for telomeric G-quadruplexes. Here, we report a novel singl...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2016.08.013

    authors: Liu HY,Zhao Q,Zhang TP,Wu Y,Xiong YX,Wang SK,Ge YL,He JH,Lv P,Ou TM,Tan JH,Li D,Gu LQ,Ren J,Zhao Y,Huang ZS

    更新日期:2016-10-20 00:00:00

  • Structural and Biochemical Basis for Intracellular Kinase Inhibition by Src-specific Peptidic Macrocycles.

    abstract::Protein kinases are attractive therapeutic targets because their dysregulation underlies many diseases, including cancer. The high conservation of the kinase domain and the evolution of drug resistance, however, pose major challenges to the development of specific kinase inhibitors. We recently discovered selective Sr...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2016.07.017

    authors: Aleem S,Georghiou G,Kleiner RE,Guja K,Craddock BP,Lyczek A,Chan AI,Garcia-Diaz M,Miller WT,Liu DR,Seeliger MA

    更新日期:2016-09-22 00:00:00

  • Just a Spoonful of Sugar, HTLV-1 Style.

    abstract::Host cell metabolism regulates viral infection. In this issue of Cell Chemical Biology, Kulkarni et al. (2017) reveal the importance of oxygen concentrations and glycolysis in the reactivation of human T cell leukemia virus (HTLV-1). Identifying the host metabolic networks that regulate infection will foster our under...

    journal_title:Cell chemical biology

    pub_type: 评论,杂志文章

    doi:10.1016/j.chembiol.2017.10.014

    authors: Taylor N

    更新日期:2017-11-16 00:00:00

  • Selective JAK3 Inhibitors with a Covalent Reversible Binding Mode Targeting a New Induced Fit Binding Pocket.

    abstract::Janus kinases (JAKs) are a family of cytoplasmatic tyrosine kinases that are attractive targets for the development of anti-inflammatory drugs given their roles in cytokine signaling. One question regarding JAKs and their inhibitors that remains under intensive debate is whether JAK inhibitors should be isoform select...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2016.10.008

    authors: Forster M,Chaikuad A,Bauer SM,Holstein J,Robers MB,Corona CR,Gehringer M,Pfaffenrot E,Ghoreschi K,Knapp S,Laufer SA

    更新日期:2016-11-17 00:00:00

  • A Robust, GFP-Orthogonal Photoswitchable Inhibitor Scaffold Extends Optical Control over the Microtubule Cytoskeleton.

    abstract::Optically controlled chemical reagents, termed "photopharmaceuticals," are powerful tools for precise spatiotemporal control of proteins particularly when genetic methods, such as knockouts or optogenetics are not viable options. However, current photopharmaceutical scaffolds, such as azobenzenes are intolerant of GFP...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2020.11.007

    authors: Gao L,Meiring JCM,Kraus Y,Wranik M,Weinert T,Pritzl SD,Bingham R,Ntouliou E,Jansen KI,Olieric N,Standfuss J,Kapitein LC,Lohmüller T,Ahlfeld J,Akhmanova A,Steinmetz MO,Thorn-Seshold O

    更新日期:2020-11-27 00:00:00

  • GNF-2 Inhibits Dengue Virus by Targeting Abl Kinases and the Viral E Protein.

    abstract::Dengue virus infects more than 300 million people annually, yet there is no widely protective vaccine or drugs against the virus. Efforts to develop antivirals against classical targets such as the viral protease and polymerase have not yielded drugs that have advanced to the clinic. Here, we show that the allosteric ...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2016.03.010

    authors: Clark MJ,Miduturu C,Schmidt AG,Zhu X,Pitts JD,Wang J,Potisopon S,Zhang J,Wojciechowski A,Hann Chu JJ,Gray NS,Yang PL

    更新日期:2016-04-21 00:00:00

  • Inhibition of K-RAS4B by a Unique Mechanism of Action: Stabilizing Membrane-Dependent Occlusion of the Effector-Binding Site.

    abstract::KRAS is frequently mutated in several of the most lethal types of cancer; however, the KRAS protein has proven a challenging drug target. K-RAS4B must be localized to the plasma membrane by prenylation to activate oncogenic signaling, thus we endeavored to target the protein-membrane interface with small-molecule comp...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2018.07.009

    authors: Fang Z,Marshall CB,Nishikawa T,Gossert AD,Jansen JM,Jahnke W,Ikura M

    更新日期:2018-11-15 00:00:00

  • Small-Molecule Targets in Immuno-Oncology.

    abstract::Advances in understanding the role and molecular mechanisms underlying immune surveillance and control of (pre)malignancies is revolutionizing clinical practice in the treatment of cancer. Presently, multiple biologic drugs targeting the immune checkpoint proteins PD(L)1 or CTLA4 have been approved and/or are in advan...

    journal_title:Cell chemical biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.chembiol.2017.08.019

    authors: Dhanak D,Edwards JP,Nguyen A,Tummino PJ

    更新日期:2017-09-21 00:00:00

  • Selective Inhibition of BFL1: It's All about Finding the Right Partner.

    abstract::In this issue of Cell Chemical Biology, Harvey et al. (2020) identify 4E14, a sulfhydryl-containing N-acetyltryptophan analog that selectively disrupts binding to the previously undruggable anti-apoptotic BCL2 paralog BFL1, and elucidate a BFL1 conformational change that facilitates 4E14 interaction. These results pro...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2020.05.014

    authors: Dai H,Meng XW,Kaufmann SH

    更新日期:2020-06-18 00:00:00

  • USP7-Specific Inhibitors Target and Modify the Enzyme's Active Site via Distinct Chemical Mechanisms.

    abstract::USP7 is a deubiquitinating enzyme that plays a pivotal role in multiple oncogenic pathways and therefore is a desirable target for new anti-cancer therapies. However, the lack of structural information about the USP7-inhibitor interactions has been a critical gap in the development of potent inhibitors. USP7 is unique...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2017.09.004

    authors: Pozhidaeva A,Valles G,Wang F,Wu J,Sterner DE,Nguyen P,Weinstock J,Kumar KGS,Kanyo J,Wright D,Bezsonova I

    更新日期:2017-12-21 00:00:00

  • Epiblastin A Induces Reprogramming of Epiblast Stem Cells Into Embryonic Stem Cells by Inhibition of Casein Kinase 1.

    abstract::The discovery of novel small molecules that induce stem cell reprogramming and give efficient access to pluripotent stem cells is of major importance for potential therapeutic applications and may reveal novel insights into the factors controlling pluripotency. Chemical reprogramming of mouse epiblast stem cells (EpiS...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2016.02.015

    authors: Ursu A,Illich DJ,Takemoto Y,Porfetye AT,Zhang M,Brockmeyer A,Janning P,Watanabe N,Osada H,Vetter IR,Ziegler S,Schöler HR,Waldmann H

    更新日期:2016-04-21 00:00:00

  • Lithocholic Acid Hydroxyamide Destabilizes Cyclin D1 and Induces G0/G1 Arrest by Inhibiting Deubiquitinase USP2a.

    abstract::USP2a is a deubiquitinase responsible for stabilization of cyclin D1, a crucial regulator of cell-cycle progression and a proto-oncoprotein overexpressed in numerous cancer types. Here we report that lithocholic acid (LCA) derivatives are inhibitors of USP proteins, including USP2a. The most potent LCA derivative, LCA...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2017.03.002

    authors: Magiera K,Tomala M,Kubica K,De Cesare V,Trost M,Zieba BJ,Kachamakova-Trojanowska N,Les M,Dubin G,Holak TA,Skalniak L

    更新日期:2017-04-20 00:00:00

  • A SUMO1-derived peptide targeting SUMO-interacting motif inhibits α-synuclein aggregation.

    abstract::The accumulation of α-synuclein amyloid fibrils in the brain is linked to Parkinson's disease and other synucleinopathies. The intermediate species in the early aggregation phase of α-synuclein are involved in the emergence of amyloid toxicity and considered to be the most neurotoxic. The N-terminal region flanking th...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2020.12.010

    authors: Liang Z,Chan HYE,Lee MM,Chan MK

    更新日期:2021-01-06 00:00:00

  • Systematic Identification of Pharmacological Targets from Small-Molecule Phenotypic Screens.

    abstract::Phenotypic drug discovery offers some advantages over target-based methods, mainly because it allows drug leads to be tested in systems that more closely model distinct disease states. However, a potential disadvantage is the difficulty of linking the observed phenotype to a specific cellular target. To address this p...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2016.08.011

    authors: Liu X,Baarsma HA,Thiam CH,Montrone C,Brauner B,Fobo G,Heier JS,Duscha S,Königshoff M,Angeli V,Ruepp A,Campillos M

    更新日期:2016-10-20 00:00:00