Systematic Identification of a Panel of Strong Constitutive Promoters from Streptomyces albus.

Abstract:

:Actinomycetes are important organisms for the biosynthesis of valuable natural products. However, only a limited number of well-characterized native constitutive promoters from actinomycetes are available for the construction and engineering of large biochemical pathways. Here, we report the discovery and characterization of 32 candidate promoters identified from Streptomyces albus J1074 by RNA-seq analysis. These 32 promoters were cloned and characterized using a streptomycete reporter gene, xylE, encoding catechol 2,3-dioxygenase. The strengths of the identified strong promoters varied from 200 to 1300% of the strength of the well-known ermE*p in MYG medium, and the strongest of these promoters was by far the strongest actinomycete promoter ever reported in the literature. To further confirm the strengths of these promoters, qPCR was employed to determine the transcriptional levels of the xylE reporter. In total, 10 strong promoters were identified and four constitutive promoters were characterized via a time-course study. These promoters were used in a plug-and-play platform to activate a cryptic gene cluster from Streptomyces griseus, and successful activation of the target pathway was observed in three widely used Streptomyces strains. Therefore, these promoters should be highly useful in current synthetic biology platforms for activation and characterization of silent natural product biosynthetic pathways as well as the optimization of pathways for the synthesis of important natural products in actinomycetes.

journal_name

ACS Synth Biol

journal_title

ACS synthetic biology

authors

Luo Y,Zhang L,Barton KW,Zhao H

doi

10.1021/acssynbio.5b00016

subject

Has Abstract

pub_date

2015-09-18 00:00:00

pages

1001-10

issue

9

issn

2161-5063

journal_volume

4

pub_type

杂志文章
  • Sequence Specific Modeling of E. coli Cell-Free Protein Synthesis.

    abstract::Cell-free protein synthesis (CFPS) is a widely used research tool in systems and synthetic biology. However, if CFPS is to become a mainstream technology for applications such as point of care manufacturing, we must understand the performance limits and costs of these systems. Toward this question, we used sequence sp...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.7b00465

    authors: Vilkhovoy M,Horvath N,Shih CH,Wayman JA,Calhoun K,Swartz J,Varner JD

    更新日期:2018-08-17 00:00:00

  • Exploring the heterologous genomic space for building, stepwise, complex, multicomponent tolerance to toxic chemicals.

    abstract::Modern bioprocessing depends on superior cellular traits, many stemming from unknown genes and gene interactions. Tolerance to toxic chemicals is such an industrially important complex trait, which frequently limits the economic feasibility of producing commodity chemicals and biofuels. Chemical tolerance encompasses ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb400156v

    authors: Zingaro KA,Nicolaou SA,Yuan Y,Papoutsakis ET

    更新日期:2014-07-18 00:00:00

  • Toward Synthetic Spatial Patterns in Engineered Cell Populations with Chemotaxis.

    abstract::A major force shaping form and patterns in biology is based in the presence of amplification mechanisms able to generate ordered, large-scale spatial structures out of local interactions and random initial conditions. Turing patterns are one of the best known candidates for such ordering dynamics, and their existence ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.5b00254

    authors: Duran-Nebreda S,Solé RV

    更新日期:2016-07-15 00:00:00

  • Single Day Construction of Multigene Circuits with 3G Assembly.

    abstract::The ability to rapidly design, build, and test prototypes is of key importance to every engineering discipline. DNA assembly often serves as a rate limiting step of the prototyping cycle for synthetic biology. Recently developed DNA assembly methods such as isothermal assembly and type IIS restriction enzyme systems t...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00060

    authors: Halleran AD,Swaminathan A,Murray RM

    更新日期:2018-05-18 00:00:00

  • CRISPR-Cas9 Based Engineering of Actinomycetal Genomes.

    abstract::Bacteria of the order Actinomycetales are one of the most important sources of pharmacologically active and industrially relevant secondary metabolites. Unfortunately, many of them are still recalcitrant to genetic manipulation, which is a bottleneck for systematic metabolic engineering. To facilitate the genetic mani...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.5b00038

    authors: Tong Y,Charusanti P,Zhang L,Weber T,Lee SY

    更新日期:2015-09-18 00:00:00

  • Nucleic Acid Detection Using CRISPR/Cas Biosensing Technologies.

    abstract::For infectious diseases, rapid and accurate identification of the pathogen is critical for effective management and treatment, but diagnosis remains challenging, particularly in resource-limited areas. Methods that accurately detect pathogen nucleic acids can provide robust, accurate, rapid, and ultrasensitive technol...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00507

    authors: Aman R,Mahas A,Mahfouz M

    更新日期:2020-06-19 00:00:00

  • Direct mutagenesis of thousands of genomic targets using microarray-derived oligonucleotides.

    abstract::Multiplex Automated Genome Engineering (MAGE) allows simultaneous mutagenesis of multiple target sites in bacterial genomes using short oligonucleotides. However, large-scale mutagenesis requires hundreds to thousands of unique oligos, which are costly to synthesize and impossible to scale-up by traditional phosphoram...

    journal_title:ACS synthetic biology

    pub_type: 信件

    doi:10.1021/sb5001565

    authors: Bonde MT,Kosuri S,Genee HJ,Sarup-Lytzen K,Church GM,Sommer MO,Wang HH

    更新日期:2015-01-16 00:00:00

  • Strategies for Editing Virulent Staphylococcal Phages Using CRISPR-Cas10.

    abstract::Staphylococci are prevalent skin-dwelling bacteria that are also leading causes of antibiotic-resistant infections. Viruses that infect and lyse these organisms (virulent staphylococcal phages) can be used as alternatives to conventional antibiotics and represent promising tools to eliminate or manipulate specific spe...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.7b00240

    authors: Bari SMN,Walker FC,Cater K,Aslan B,Hatoum-Aslan A

    更新日期:2017-12-15 00:00:00

  • Identification of a Strong Quorum Sensing- and Thermo-Regulated Promoter for the Biosynthesis of a New Metabolite Pesticide Phenazine-1-carboxamide in Pseudomonas strain PA1201.

    abstract::Phenazine-1-carboxamide (PCN) produced by multifarious Pseudomonas strains represents a promising candidate as a new metabolite pesticide due to its broad-spectrum antifungal activity and capacity to induce systemic resistance in plants. The rice rhizosphere Pseudomonas strain PA1201 contains two reiterated gene clust...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00161

    authors: Jin ZJ,Zhou L,Sun S,Cui Y,Song K,Zhang X,He YW

    更新日期:2020-07-17 00:00:00

  • Cellular signaling circuits interfaced with synthetic, post-translational, negating Boolean logic devices.

    abstract::A negating functionality is fundamental to information processing of logic circuits within cells and computers. Aiming to adapt unutilized electronic concepts to the interrogation of signaling circuits in cells, we first took a bottom-up strategy whereby we created protein-based devices that perform negating Boolean l...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb500222z

    authors: Razavi S,Su S,Inoue T

    更新日期:2014-09-19 00:00:00

  • Transcription activator-like effectors: a toolkit for synthetic biology.

    abstract::Transcription activator-like effectors (TALEs) are proteins secreted by Xanthomonas bacteria to aid the infection of plant species. TALEs assist infections by binding to specific DNA sequences and activating the expression of host genes. Recent results show that TALE proteins consist of a central repeat domain, which ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章,评审

    doi:10.1021/sb400137b

    authors: Moore R,Chandrahas A,Bleris L

    更新日期:2014-10-17 00:00:00

  • Semisupervised Gaussian Process for Automated Enzyme Search.

    abstract::Synthetic biology is today harnessing the design of novel and greener biosynthesis routes for the production of added-value chemicals and natural products. The design of novel pathways often requires a detailed selection of enzyme sequences to import into the chassis at each of the reaction steps. To address such desi...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.5b00294

    authors: Mellor J,Grigoras I,Carbonell P,Faulon JL

    更新日期:2016-06-17 00:00:00

  • Real-time mRNA measurement during an in vitro transcription and translation reaction using binary probes.

    abstract::In vitro transcription and translation reactions have become popular for a bottom-up approach to synthetic biology. Concentrations of the mRNA intermediate are rarely determined, although knowledge of synthesis and degradation rates could facilitate rational engineering of in vitro systems. We designed binary probes t...

    journal_title:ACS synthetic biology

    pub_type: 信件

    doi:10.1021/sb300104f

    authors: Niederholtmeyer H,Xu L,Maerkl SJ

    更新日期:2013-08-16 00:00:00

  • An in Vivo Binding Assay for RNA-Binding Proteins Based on Repression of a Reporter Gene.

    abstract::We study translation repression in bacteria by engineering a regulatory circuit that functions as a binding assay for RNA binding proteins (RBP) in vivo. We do so by inducing expression of a fluorescent protein-RBP chimera, together with encoding its binding site at various positions within the ribosomal initiation re...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00378

    authors: Katz N,Cohen R,Solomon O,Kaufmann B,Atar O,Yakhini Z,Goldberg S,Amit R

    更新日期:2018-12-21 00:00:00

  • Bioprinting Living Biofilms through Optogenetic Manipulation.

    abstract::In this paper, we present a new strategy for microprinting dense bacterial communities with a prescribed organization on a substrate. Unlike conventional bioprinting techniques that require bioinks, through optogenetic manipulation, we directly manipulated the behaviors of Pseudomonas aeruginosa to allow these living ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00003

    authors: Huang Y,Xia A,Yang G,Jin F

    更新日期:2018-05-18 00:00:00

  • MEGA (Multiple Essential Genes Assembling) deletion and replacement method for genome reduction in Escherichia coli.

    abstract::Top-down reduction of the bacterial genome to construct desired chassis cells is important for synthetic biology. However, the current progress in the field of genome reduction is greatly hindered by indispensable life-essential genes that are interspersed throughout the chromosomal loci. Here, we described a new meth...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb500324p

    authors: Xue X,Wang T,Jiang P,Shao Y,Zhou M,Zhong L,Wu R,Zhou J,Xia H,Zhao G,Qin Z

    更新日期:2015-06-19 00:00:00

  • Rapid and Scalable Preparation of Bacterial Lysates for Cell-Free Gene Expression.

    abstract::Cell-free gene expression systems are emerging as an important platform for a diverse range of synthetic biology and biotechnology applications, including production of robust field-ready biosensors. Here, we combine programmed cellular autolysis with a freeze-thaw or freeze-dry cycle to create a practical, reproducib...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.7b00253

    authors: Didovyk A,Tonooka T,Tsimring L,Hasty J

    更新日期:2017-12-15 00:00:00

  • PERSIA for Direct Fluorescence Measurements of Transcription, Translation, and Enzyme Activity in Cell-Free Systems.

    abstract::Quantification of biology's central dogma (transcription and translation) is pursued by a variety of methods. Direct, immediate, and ongoing quantification of these events is difficult to achieve. Common practice is to use fluorescent or luminescent proteins to report indirectly on prior cellular events, such as turni...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00450

    authors: Wick S,Walsh DI 3rd,Bobrow J,Hamad-Schifferli K,Kong DS,Thorsen T,Mroszczyk K,Carr PA

    更新日期:2019-05-17 00:00:00

  • Circumvention of Learning Increases Intoxication Efficacy of Nematicidal Engineered Bacteria.

    abstract::Synthetic biology holds promise to engineer systems to treat diseases. One critical, yet underexplored, facet of designing such systems is the interplay between the system and the pathogen. Understanding this interplay may be critical to increasing efficacy and overcoming resistance against the system. Using the princ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.5b00192

    authors: Bracho OR,Manchery C,Haskell EC,Blanar CA,Smith RP

    更新日期:2016-03-18 00:00:00

  • Structural Characterization of a Synthetic Tandem-Domain Bacterial Microcompartment Shell Protein Capable of Forming Icosahedral Shell Assemblies.

    abstract::Bacterial microcompartments are subcellular compartments found in many prokaryotes; they consist of a protein shell that encapsulates enzymes that perform a variety of functions. The shell protects the cell from potentially toxic intermediates and colocalizes enzymes for higher efficiency. Accordingly, it is of consid...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00011

    authors: Sutter M,McGuire S,Ferlez B,Kerfeld CA

    更新日期:2019-04-19 00:00:00

  • Metabolic Engineering of Pseudomonas putida KT2440 for Complete Mineralization of Methyl Parathion and γ-Hexachlorocyclohexane.

    abstract::Agricultural soils are often cocontaminated with multiple pesticides. Unfortunately, microorganisms isolated from natural environments do not possess the ability to simultaneously degrade different classes of pesticides. Currently, we can use the approaches of synthetic biology to create a strain endowed with various ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00025

    authors: Gong T,Liu R,Zuo Z,Che Y,Yu H,Song C,Yang C

    更新日期:2016-05-20 00:00:00

  • Analog Computation by DNA Strand Displacement Circuits.

    abstract::DNA circuits have been widely used to develop biological computing devices because of their high programmability and versatility. Here, we propose an architecture for the systematic construction of DNA circuits for analog computation based on DNA strand displacement. The elementary gates in our architecture include ad...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00144

    authors: Song T,Garg S,Mokhtar R,Bui H,Reif J

    更新日期:2016-08-19 00:00:00

  • An Engineered Survival-Selection Assay for Extracellular Protein Expression Uncovers Hypersecretory Phenotypes in Escherichia coli.

    abstract::The extracellular expression of recombinant proteins using laboratory strains of Escherichia coli is now routinely achieved using naturally secreted substrates, such as YebF or the osmotically inducible protein Y (OsmY), as carrier molecules. However, secretion efficiency through these pathways needs to be improved fo...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00366

    authors: Natarajan A,Haitjema CH,Lee R,Boock JT,DeLisa MP

    更新日期:2017-05-19 00:00:00

  • Engineered Biosensors from Dimeric Ligand-Binding Domains.

    abstract::Biosensors are important components of many synthetic biology and metabolic engineering applications. Here, we report a second generation of Saccharomyces cerevisiae digoxigenin and progesterone biosensors based on destabilized dimeric ligand-binding domains that undergo ligand-induced stabilization. The biosensors, c...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00242

    authors: Jester BW,Tinberg CE,Rich MS,Baker D,Fields S

    更新日期:2018-10-19 00:00:00

  • Intracellular Noise Level Determines Ratio Control Strategy Confined by Speed-Accuracy Trade-off.

    abstract::Robust and precise ratio control of heterogeneous phenotypes within an isogenic population is an essential task, especially in the development and differentiation of a large number of cells such as bacteria, sensory receptors, and blood cells. However, the mechanisms of such ratio control are poorly understood. Here, ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00030

    authors: Menn D,Sochor P,Goetz H,Tian XJ,Wang X

    更新日期:2019-06-21 00:00:00

  • Enhancing Intercellular Coordination: Rewiring Quorum Sensing Networks for Increased Protein Expression through Autonomous Induction.

    abstract::While inducing agents are often used to redirect resources from growth and proliferation toward product outputs, they can be prohibitively expensive on the industrial scale. Previously, we developed an autonomously guided protein production system based on the rewiring of E. coli's native quorum sensing (QS) signal tr...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.5b00261

    authors: Zargar A,Quan DN,Bentley WE

    更新日期:2016-09-16 00:00:00

  • A Post-translational Metabolic Switch Enables Complete Decoupling of Bacterial Growth from Biopolymer Production in Engineered Escherichia coli.

    abstract::Most of the current methods for controlling the formation rate of a key protein or enzyme in cell factories rely on the manipulation of target genes within the pathway. In this article, we present a novel synthetic system for post-translational regulation of protein levels, FENIX, which provides both independent contr...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00345

    authors: Durante-Rodríguez G,de Lorenzo V,Nikel PI

    更新日期:2018-11-16 00:00:00

  • Microbial Synthesis of Human-Hormone Melatonin at Gram Scales.

    abstract::Melatonin is a commercially attractive tryptophan-derived hormone. Here we describe a bioprocess for the production of melatonin using Escherichia coli to high titers. The first engineered strain produced 0.13 g/L of melatonin from tryptophan under fed-batch fermentation conditions. A 4-fold improvement on melatonin t...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00065

    authors: Luo H,Schneider K,Christensen U,Lei Y,Herrgard M,Palsson BØ

    更新日期:2020-06-19 00:00:00

  • Biosynthesis of antimycins with a reconstituted 3-formamidosalicylate pharmacophore in Escherichia coli.

    abstract::Antimycins are a family of natural products generated from a hybrid nonribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) assembly line. Although they possess an array of useful biological activities, their structural complexity makes chemical synthesis challenging, and their biosynthesis has thus far been ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb5003136

    authors: Liu J,Zhu X,Seipke RF,Zhang W

    更新日期:2015-05-15 00:00:00

  • A Tunable Protein Piston That Breaks Membranes to Release Encapsulated Cargo.

    abstract::Movement of molecules across membranes in response to a stimulus is a key component of cellular programming. Here, we characterize and manipulate the response of a protein-based piston capable of puncturing membranes in a pH-dependent manner. Our protein actuator consists of modified R bodies found in a bacterial endo...

    journal_title:ACS synthetic biology

    pub_type: 信件

    doi:10.1021/acssynbio.5b00237

    authors: Polka JK,Silver PA

    更新日期:2016-04-15 00:00:00