An in Vivo Binding Assay for RNA-Binding Proteins Based on Repression of a Reporter Gene.

Abstract:

:We study translation repression in bacteria by engineering a regulatory circuit that functions as a binding assay for RNA binding proteins (RBP) in vivo. We do so by inducing expression of a fluorescent protein-RBP chimera, together with encoding its binding site at various positions within the ribosomal initiation region (+11-13 nt from the AUG) of a reporter module. We show that when bound by their cognate RBPs, the phage coat proteins for PP7 (PCP) and Qβ (QCP), strong repression is observed for all hairpin positions within the initiation region. Yet, a sharp transition to no-effect is observed when positioned in the elongation region, at a single-nucleotide resolution. Employing in vivo Selective 2'-hydroxyl acylation analyzed by primer extension followed by sequencing (SHAPE-seq) for a representative construct, established that in the translationally active state the mRNA molecule is nonstructured, while in the repressed state a structured signature was detected. We then utilize this regulatory phenomena to quantify the binding affinity of the coat proteins of phages MS2, PP7, GA, and Qβ to 14 cognate and noncognate binding sites in vivo. Using our circuit, we demonstrate qualitative differences between in vitro to in vivo binding characteristics for various variants when comparing to past studies. Furthermore, by introducing a simple mutation to the loop region for the Qβ-wt site, MCP binding is abolished, creating the first high-affinity QCP site that is completely orthogonal to MCP. Consequently, we demonstrate that our hybrid transcriptional-post-transcriptional circuit can be utilized as a binding assay to quantify RNA-RBP interactions in vivo.

journal_name

ACS Synth Biol

journal_title

ACS synthetic biology

authors

Katz N,Cohen R,Solomon O,Kaufmann B,Atar O,Yakhini Z,Goldberg S,Amit R

doi

10.1021/acssynbio.8b00378

subject

Has Abstract

pub_date

2018-12-21 00:00:00

pages

2765-2774

issue

12

issn

2161-5063

journal_volume

7

pub_type

杂志文章
  • The Formal Language and Design Principles of Autonomous DNA Walker Circuits.

    abstract::Simple computation can be performed using the interactions between single-stranded molecules of DNA. These interactions are typically toehold-mediated strand displacement reactions in a well-mixed solution. We demonstrate that a DNA circuit with tethered reactants is a distributed system and show how it can be describ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.5b00275

    authors: Boemo MA,Lucas AE,Turberfield AJ,Cardelli L

    更新日期:2016-08-19 00:00:00

  • Overcoming the Challenges of Megabase-Sized Plasmid Construction in Escherichia coli.

    abstract::Although Escherichia coli has been a popular tool for plasmid construction, this bacterium was believed to be "unsuitable" for constructing a large plasmid whose size exceeds 500 kilobases. We assumed that traditional plasmid vectors may lack some regulatory DNA elements required for the stable replication and segrega...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00008

    authors: Mukai T,Yoneji T,Yamada K,Fujita H,Nara S,Su'etsugu M

    更新日期:2020-06-19 00:00:00

  • The Resistome: A Comprehensive Database of Escherichia coli Resistance Phenotypes.

    abstract::The microbial ability to resist stressful environmental conditions and chemical inhibitors is of great industrial and medical interest. Much of the data related to mutation-based stress resistance, however, is scattered through the academic literature, making it difficult to apply systematic analyses to this wealth of...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00150

    authors: Winkler JD,Halweg-Edwards AL,Erickson KE,Choudhury A,Pines G,Gill RT

    更新日期:2016-12-16 00:00:00

  • Probing Yeast Polarity with Acute, Reversible, Optogenetic Inhibition of Protein Function.

    abstract::We recently developed a technique for rapidly and reversibly inhibiting protein function through light-inducible sequestration of proteins away from their normal sites of action. Here, we adapt this method for inducible inactivation of Bem1, a scaffold protein involved in budding yeast polarity. We find that acute inh...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.5b00053

    authors: Jost AP,Weiner OD

    更新日期:2015-10-16 00:00:00

  • Strategies for Editing Virulent Staphylococcal Phages Using CRISPR-Cas10.

    abstract::Staphylococci are prevalent skin-dwelling bacteria that are also leading causes of antibiotic-resistant infections. Viruses that infect and lyse these organisms (virulent staphylococcal phages) can be used as alternatives to conventional antibiotics and represent promising tools to eliminate or manipulate specific spe...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.7b00240

    authors: Bari SMN,Walker FC,Cater K,Aslan B,Hatoum-Aslan A

    更新日期:2017-12-15 00:00:00

  • Fluorescent proteins and in vitro genetic organization for cell-free synthetic biology.

    abstract::To facilitate the construction of cell-free genetic devices, we evaluated the ability of 17 different fluorescent proteins to give easily detectable fluorescence signals in real-time from in vitro transcription-translation reactions with a minimal system consisting of T7 RNA polymerase and E. coli translation machiner...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb400003y

    authors: Lentini R,Forlin M,Martini L,Del Bianco C,Spencer AC,Torino D,Mansy SS

    更新日期:2013-09-20 00:00:00

  • Assembly of Multicomponent Protein Filaments Using Engineered Subunit Interfaces.

    abstract::Exploiting the ability of proteins to self-assemble into architectural templates may provide novel routes for the positioning of functional molecules in nanotechnology. Here we report the engineering of multicomponent protein templates composed of distinct monomers that assemble in repeating orders into a dynamic func...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00241

    authors: Glover DJ,Lim S,Xu D,Sloan NB,Zhang Y,Clark DS

    更新日期:2018-10-19 00:00:00

  • Evolutionary stability of a refactored phage genome.

    abstract::Engineered genetic systems are commonly unstable; if propagated, they evolve to reverse or modify engineered elements because the elements impair fitness. A goal of synthetic biology is thus to anticipate and avoid detrimental engineering, but little is yet known about which types of elements cause problems in differe...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb300040v

    authors: Springman R,Molineux IJ,Duong C,Bull RJ,Bull JJ

    更新日期:2012-09-21 00:00:00

  • Repurposing Synechocystis PCC6803 UirS-UirR as a UV-Violet/Green Photoreversible Transcriptional Regulatory Tool in E. coli.

    abstract::We have previously engineered green/red and red/far red photoreversible E. coli phytochrome and cyanobacteriochrome (CBCR) two-component systems (TCSs) and utilized them to program tailor-made gene expression signals for gene circuit characterization. Here, we transport the UV-violet/green photoreversible CBCR TCS Uir...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00068

    authors: Ramakrishnan P,Tabor JJ

    更新日期:2016-07-15 00:00:00

  • Gene-Mediated Chemical Communication in Synthetic Protocell Communities.

    abstract::A gene-directed chemical communication pathway between synthetic protocell signaling transmitters (lipid vesicles) and receivers (proteinosomes) was designed, built and tested using a bottom-up modular approach comprising small molecule transcriptional control, cell-free gene expression, porin-directed efflux, substra...

    journal_title:ACS synthetic biology

    pub_type: 信件

    doi:10.1021/acssynbio.7b00306

    authors: Tang TD,Cecchi D,Fracasso G,Accardi D,Coutable-Pennarun A,Mansy SS,Perriman AW,Anderson JLR,Mann S

    更新日期:2018-02-16 00:00:00

  • Toward Synthetic Spatial Patterns in Engineered Cell Populations with Chemotaxis.

    abstract::A major force shaping form and patterns in biology is based in the presence of amplification mechanisms able to generate ordered, large-scale spatial structures out of local interactions and random initial conditions. Turing patterns are one of the best known candidates for such ordering dynamics, and their existence ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.5b00254

    authors: Duran-Nebreda S,Solé RV

    更新日期:2016-07-15 00:00:00

  • Switching Protein Localization by Site-Directed RNA Editing under Control of Light.

    abstract::Site directed RNA editing is an engineered tool for the posttranscriptional manipulation of RNA and proteins. Here, we demonstrate the inclusion of additional N- and C-terminal protein domains in an RNA editing-dependent manner to switch between protein isoforms in mammalian cell culture. By inclusion of localization ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.7b00113

    authors: Vogel P,Hanswillemenke A,Stafforst T

    更新日期:2017-09-15 00:00:00

  • The Dual Characteristics of Light-Induced Cryptochrome 2, Homo-oligomerization and Heterodimerization, for Optogenetic Manipulation in Mammalian Cells.

    abstract::The photoreceptor cryptochrome 2 (CRY2) has become a powerful optogenetic tool that allows light-inducible manipulation of various signaling pathways and cellular processes in mammalian cells with high spatiotemporal precision and ease of application. However, it has also been shown that the behavior of CRY2 under blu...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.5b00048

    authors: Che DL,Duan L,Zhang K,Cui B

    更新日期:2015-10-16 00:00:00

  • Curli-Mediated Self-Assembly of a Fibrous Protein Scaffold for Hydroxyapatite Mineralization.

    abstract::Nanostructures formed by self-assembled peptides have been increasingly exploited as functional materials for a wide variety of applications, from biotechnology to energy. However, it is sometimes challenging to assemble free short peptides into functional supramolecular structures, since not all peptides have the abi...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00415

    authors: Abdali Z,Aminzare M,Zhu X,DeBenedictis E,Xie O,Keten S,Dorval Courchesne NM

    更新日期:2020-12-18 00:00:00

  • Transcription activator-like effectors: a toolkit for synthetic biology.

    abstract::Transcription activator-like effectors (TALEs) are proteins secreted by Xanthomonas bacteria to aid the infection of plant species. TALEs assist infections by binding to specific DNA sequences and activating the expression of host genes. Recent results show that TALE proteins consist of a central repeat domain, which ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章,评审

    doi:10.1021/sb400137b

    authors: Moore R,Chandrahas A,Bleris L

    更新日期:2014-10-17 00:00:00

  • Bringing Light into Cell-Free Expression.

    abstract::Cell-free systems, as part of the synthetic biology field, have become a critical platform in biological studies. However, there is a lack of research into developing a switch for a dynamical control of the transcriptional and translational process. The optogenetic tool has been widely proven as an ideal control switc...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00211

    authors: Zhang P,Yang J,Cho E,Lu Y

    更新日期:2020-08-21 00:00:00

  • A Novel Tool for Microbial Genome Editing Using the Restriction-Modification System.

    abstract::Scarless genetic manipulation of genomes is an essential tool for biological research. The restriction-modification (R-M) system is a defense system in bacteria that protects against invading genomes on the basis of its ability to distinguish foreign DNA from self DNA. Here, we designed an R-M system-mediated genome e...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.7b00254

    authors: Bai H,Deng A,Liu S,Cui D,Qiu Q,Wang L,Yang Z,Wu J,Shang X,Zhang Y,Wen T

    更新日期:2018-01-19 00:00:00

  • A Coculture Based Tyrosine-Tyrosinase Electrochemical Gene Circuit for Connecting Cellular Communication with Electronic Networks.

    abstract::There is a growing interest in mediating information transfer between biology and electronics. By the addition of redox mediators to various samples and cells, one can both electronically obtain a redox "portrait" of a biological system and, conversely, program gene expression. Here, we have created a cell-based synth...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00469

    authors: VanArsdale E,Hörnström D,Sjöberg G,Järbur I,Pitzer J,Payne GF,van Maris AJA,Bentley WE

    更新日期:2020-05-15 00:00:00

  • Identification of a Strong Quorum Sensing- and Thermo-Regulated Promoter for the Biosynthesis of a New Metabolite Pesticide Phenazine-1-carboxamide in Pseudomonas strain PA1201.

    abstract::Phenazine-1-carboxamide (PCN) produced by multifarious Pseudomonas strains represents a promising candidate as a new metabolite pesticide due to its broad-spectrum antifungal activity and capacity to induce systemic resistance in plants. The rice rhizosphere Pseudomonas strain PA1201 contains two reiterated gene clust...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00161

    authors: Jin ZJ,Zhou L,Sun S,Cui Y,Song K,Zhang X,He YW

    更新日期:2020-07-17 00:00:00

  • Metabolic Engineering of Escherichia coli for Efficient Production of 2-Pyrone-4,6-dicarboxylic Acid from Glucose.

    abstract::2-Pyrone-4,6-dicarboxylic acid (PDC) is a pseudoaromatic dicarboxylic acid and is a promising biobased building block chemical that can be used to make diverse polyesters with novel functionalities. In this study, Escherichia coli was metabolically engineered to produce PDC from glucose. First, an efficient biosynthet...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00281

    authors: Luo ZW,Kim WJ,Lee SY

    更新日期:2018-09-21 00:00:00

  • Synthetic Gene Circuits Enable Escherichia coli To Use Endogenous H2S as a Signaling Molecule for Quorum Sensing.

    abstract::Microorganisms often use specific autoinducers other than common metabolites for quorum sensing (QS). Herein, we demonstrated that Escherichia coli produced sulfide (H2S, HS-, and S2-) with the concentrations proportionally correlated to its cell density. We then designed synthetic gene circuits that used H2S as an au...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00210

    authors: Liu H,Fan K,Li H,Wang Q,Yang Y,Li K,Xia Y,Xun L

    更新日期:2019-09-20 00:00:00

  • A Tunable Protein Piston That Breaks Membranes to Release Encapsulated Cargo.

    abstract::Movement of molecules across membranes in response to a stimulus is a key component of cellular programming. Here, we characterize and manipulate the response of a protein-based piston capable of puncturing membranes in a pH-dependent manner. Our protein actuator consists of modified R bodies found in a bacterial endo...

    journal_title:ACS synthetic biology

    pub_type: 信件

    doi:10.1021/acssynbio.5b00237

    authors: Polka JK,Silver PA

    更新日期:2016-04-15 00:00:00

  • Matching Protein Interfaces for Improved Medium-Chain Fatty Acid Production.

    abstract::Medium-chain fatty acids (MCFAs) are key intermediates in the synthesis of medium-chain chemicals including α-olefins and dicarboxylic acids. In bacteria, microbial production of MCFAs is limited by the activity and product profile of fatty acyl-ACP thioesterases. Here, we engineer a heterologous bacterial medium-chai...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.7b00334

    authors: Sarria S,Bartholow TG,Verga A,Burkart MD,Peralta-Yahya P

    更新日期:2018-05-18 00:00:00

  • Comprehensive Profiling of Four Base Overhang Ligation Fidelity by T4 DNA Ligase and Application to DNA Assembly.

    abstract::Synthetic biology relies on the manufacture of large and complex DNA constructs from libraries of genetic parts. Golden Gate and other Type IIS restriction enzyme-dependent DNA assembly methods enable rapid construction of genes and operons through one-pot, multifragment assembly, with the ordering of parts determined...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00333

    authors: Potapov V,Ong JL,Kucera RB,Langhorst BW,Bilotti K,Pryor JM,Cantor EJ,Canton B,Knight TF,Evans TC Jr,Lohman GJS

    更新日期:2018-11-16 00:00:00

  • Metabolic Engineering of Pseudomonas putida KT2440 for Complete Mineralization of Methyl Parathion and γ-Hexachlorocyclohexane.

    abstract::Agricultural soils are often cocontaminated with multiple pesticides. Unfortunately, microorganisms isolated from natural environments do not possess the ability to simultaneously degrade different classes of pesticides. Currently, we can use the approaches of synthetic biology to create a strain endowed with various ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00025

    authors: Gong T,Liu R,Zuo Z,Che Y,Yu H,Song C,Yang C

    更新日期:2016-05-20 00:00:00

  • Rapid and Scalable Preparation of Bacterial Lysates for Cell-Free Gene Expression.

    abstract::Cell-free gene expression systems are emerging as an important platform for a diverse range of synthetic biology and biotechnology applications, including production of robust field-ready biosensors. Here, we combine programmed cellular autolysis with a freeze-thaw or freeze-dry cycle to create a practical, reproducib...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.7b00253

    authors: Didovyk A,Tonooka T,Tsimring L,Hasty J

    更新日期:2017-12-15 00:00:00

  • Comprehensive in Vitro Analysis of Acyltransferase Domain Exchanges in Modular Polyketide Synthases and Its Application for Short-Chain Ketone Production.

    abstract::Type I modular polyketide synthases (PKSs) are polymerases that utilize acyl-CoAs as substrates. Each polyketide elongation reaction is catalyzed by a set of protein domains called a module. Each module usually contains an acyltransferase (AT) domain, which determines the specific acyl-CoA incorporated into each conde...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00176

    authors: Yuzawa S,Deng K,Wang G,Baidoo EE,Northen TR,Adams PD,Katz L,Keasling JD

    更新日期:2017-01-20 00:00:00

  • Heterochiral DNA Strand-Displacement Based on Chimeric d/l-Oligonucleotides.

    abstract::Heterochiral DNA strand-displacement reactions enable sequence-specific interfacing of oligonucleotide enantiomers, making it possible to interface native d-nucleic acids with molecular circuits built using nuclease-resistant l-DNA. To date, all heterochiral reactions have relied on peptide nucleic acid (PNA), which p...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00335

    authors: Young BE,Sczepanski JT

    更新日期:2019-12-20 00:00:00

  • Metabolic Rewiring Improves the Production of the Fungal Active Targeting Molecule Fusarinine C.

    abstract::Author: Recently, increasing research in siderophores has been dedicated to their possible medical applications in diagnostics and therapeutics for human pathogenic infections. Fusarinine C (FsC) is a natural hydroxamate siderophore that harbors three amino groups, which allow the easy chemical modification of FsC for...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00026

    authors: Lu Y,Wang H,Wang Z,Cong Y,Zhang P,Liu G,Liu C,Chi Z,Chi Z

    更新日期:2019-08-16 00:00:00

  • Resource Sharing Controls Gene Expression Bursting.

    abstract::Episodic gene expression, with periods of high expression separated by periods of no expression, is a pervasive biological phenomenon. This bursty pattern of expression draws from a finite reservoir of expression machinery in a highly time variant way, i.e., requiring no resources most of the time but drawing heavily ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00189

    authors: Caveney PM,Norred SE,Chin CW,Boreyko JB,Razooky BS,Retterer ST,Collier CP,Simpson ML

    更新日期:2017-02-17 00:00:00