Synthetic Gene Circuits Enable Escherichia coli To Use Endogenous H2S as a Signaling Molecule for Quorum Sensing.

Abstract:

:Microorganisms often use specific autoinducers other than common metabolites for quorum sensing (QS). Herein, we demonstrated that Escherichia coli produced sulfide (H2S, HS-, and S2-) with the concentrations proportionally correlated to its cell density. We then designed synthetic gene circuits that used H2S as an autoinducer for quorum sensing. A sulfide/quinone oxidoreductase converted diffusible H2S to indiffusible hydrogen polysulfide (HS n H, n ≥ 2), and a gene regulator CstR sensed the latter to turn on the gene expression. We constructed three element libraries, with which 24 different circuits could be assembled for adjustable sensitivity to cell density. The H2S-mediated gene circuits endowed E. coli cells within the same batch or microcolony with highly synchronous behaviors. Using them we successfully constructed cell factories capable of an autonomous switch from growth phase to production phase. Thus, these circuits provide a new tool-kit for metabolic engineering and synthetic biology.

journal_name

ACS Synth Biol

journal_title

ACS synthetic biology

authors

Liu H,Fan K,Li H,Wang Q,Yang Y,Li K,Xia Y,Xun L

doi

10.1021/acssynbio.9b00210

subject

Has Abstract

pub_date

2019-09-20 00:00:00

pages

2113-2120

issue

9

issn

2161-5063

journal_volume

8

pub_type

杂志文章
  • Engineered platform for bioethylene production by a cyanobacterium expressing a chimeric complex of plant enzymes.

    abstract::Ethylene is an industrially important compound, but more sustainable production methods are desirable. Since cellulosomes increase the ability of cellulolytic enzymes by physically linking the relevant enzymes via dockerin-cohesin interactions, in this study, we genetically engineered a chimeric cellulosome-like compl...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb400197f

    authors: Jindou S,Ito Y,Mito N,Uematsu K,Hosoda A,Tamura H

    更新日期:2014-07-18 00:00:00

  • Assembly of Multicomponent Protein Filaments Using Engineered Subunit Interfaces.

    abstract::Exploiting the ability of proteins to self-assemble into architectural templates may provide novel routes for the positioning of functional molecules in nanotechnology. Here we report the engineering of multicomponent protein templates composed of distinct monomers that assemble in repeating orders into a dynamic func...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00241

    authors: Glover DJ,Lim S,Xu D,Sloan NB,Zhang Y,Clark DS

    更新日期:2018-10-19 00:00:00

  • A tetO Toolkit To Alter Expression of Genes in Saccharomyces cerevisiae.

    abstract::Strategies to optimize a metabolic pathway often involve building a large collection of strains, each containing different versions of sequences that regulate the expression of pathway genes. Here, we develop reagents and methods to carry out this process at high efficiency in the yeast Saccharomyces cerevisiae. We id...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb500363y

    authors: Cuperus JT,Lo RS,Shumaker L,Proctor J,Fields S

    更新日期:2015-07-17 00:00:00

  • "Site and Mutation"-Specific Predictions Enable Minimal Directed Evolution Libraries.

    abstract::Directed evolution experiments designed to improve the activity of a biocatalyst have increased in sophistication from the early days of completely random mutagenesis. Sequence-based and structure-based methods have been developed to identify "hotspot" positions that when randomized provide a higher frequency of benef...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.7b00359

    authors: Moore JC,Rodriguez-Granillo A,Crespo A,Govindarajan S,Welch M,Hiraga K,Lexa K,Marshall N,Truppo MD

    更新日期:2018-07-20 00:00:00

  • Scalable plasmid transfer using engineered P1-based phagemids.

    abstract::Dramatic improvements to computational, robotic, and biological tools have enabled genetic engineers to conduct increasingly sophisticated experiments. Further development of biological tools offers a route to bypass complex or expensive mechanical operations, thereby reducing the time and cost of highly parallelized ...

    journal_title:ACS synthetic biology

    pub_type: 信件

    doi:10.1021/sb300054p

    authors: Kittleson JT,DeLoache W,Cheng HY,Anderson JC

    更新日期:2012-12-21 00:00:00

  • Programming the Dynamic Control of Bacterial Gene Expression with a Chimeric Ligand- and Light-Based Promoter System.

    abstract::To program cells in a dynamic manner, synthetic biologists require precise control over the threshold levels and timing of gene expression. However, in practice, modulating gene expression is widely carried out using prototypical ligand-inducible promoters, which have limited tunability and spatiotemporal resolution. ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00280

    authors: Jayaraman P,Yeoh JW,Zhang J,Poh CL

    更新日期:2018-11-16 00:00:00

  • Fluorescent proteins and in vitro genetic organization for cell-free synthetic biology.

    abstract::To facilitate the construction of cell-free genetic devices, we evaluated the ability of 17 different fluorescent proteins to give easily detectable fluorescence signals in real-time from in vitro transcription-translation reactions with a minimal system consisting of T7 RNA polymerase and E. coli translation machiner...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb400003y

    authors: Lentini R,Forlin M,Martini L,Del Bianco C,Spencer AC,Torino D,Mansy SS

    更新日期:2013-09-20 00:00:00

  • Minimization of Elements for Isothermal DNA Replication by an Evolutionary Approach.

    abstract::DNA replication is one of the central functions of the cell. The complexity of modern DNA replication systems raises a question: is it possible to achieve a simpler continuous isothermal DNA replication using fewer proteins? Here, we searched such replication using an evolutionary approach. Through a long-term serial ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00137

    authors: Okauchi H,Sakatani Y,Otsuka K,Ichihashi N

    更新日期:2020-07-17 00:00:00

  • Mathematical Modeling of RNA-Based Architectures for Closed Loop Control of Gene Expression.

    abstract::Feedback allows biological systems to control gene expression precisely and reliably, even in the presence of uncertainty, by sensing and processing environmental changes. Taking inspiration from natural architectures, synthetic biologists have engineered feedback loops to tune the dynamics and improve the robustness ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00040

    authors: Agrawal DK,Tang X,Westbrook A,Marshall R,Maxwell CS,Lucks J,Noireaux V,Beisel CL,Dunlop MJ,Franco E

    更新日期:2018-05-18 00:00:00

  • Cloning, Stability, and Modification of Mycoplasma hominis Genome in Yeast.

    abstract::Mycoplasma hominis is a minimal human pathogen that is responsible for genital and neonatal infections. Despite many attempts, there is no efficient genetic tool to manipulate this bacterium, limiting most investigations of its pathogenicity and its uncommon energy metabolism that relies on arginine. The recent clonin...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00379

    authors: Rideau F,Le Roy C,Descamps ECT,Renaudin H,Lartigue C,Bébéar C

    更新日期:2017-05-19 00:00:00

  • A Scalable Epitope Tagging Approach for High Throughput ChIP-Seq Analysis.

    abstract::Eukaryotic transcriptional factors (TFs) typically recognize short genomic sequences alone or together with other proteins to modulate gene expression. Mapping of TF-DNA interactions in the genome is crucial for understanding the gene regulatory programs in cells. While chromatin immunoprecipitation followed by sequen...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00358

    authors: Xiong X,Zhang Y,Yan J,Jain S,Chee S,Ren B,Zhao H

    更新日期:2017-06-16 00:00:00

  • Circumvention of Learning Increases Intoxication Efficacy of Nematicidal Engineered Bacteria.

    abstract::Synthetic biology holds promise to engineer systems to treat diseases. One critical, yet underexplored, facet of designing such systems is the interplay between the system and the pathogen. Understanding this interplay may be critical to increasing efficacy and overcoming resistance against the system. Using the princ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.5b00192

    authors: Bracho OR,Manchery C,Haskell EC,Blanar CA,Smith RP

    更新日期:2016-03-18 00:00:00

  • Enzymatic Menthol Production: One-Pot Approach Using Engineered Escherichia coli.

    abstract::Menthol isomers are high-value monoterpenoid commodity chemicals, produced naturally by mint plants, Mentha spp. Alternative clean biosynthetic routes to these compounds are commercially attractive. Optimization strategies for biocatalytic terpenoid production are mainly focused on metabolic engineering of the biosynt...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.5b00092

    authors: Toogood HS,Ní Cheallaigh A,Tait S,Mansell DJ,Jervis A,Lygidakis A,Humphreys L,Takano E,Gardiner JM,Scrutton NS

    更新日期:2015-10-16 00:00:00

  • Sequence Specific Modeling of E. coli Cell-Free Protein Synthesis.

    abstract::Cell-free protein synthesis (CFPS) is a widely used research tool in systems and synthetic biology. However, if CFPS is to become a mainstream technology for applications such as point of care manufacturing, we must understand the performance limits and costs of these systems. Toward this question, we used sequence sp...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.7b00465

    authors: Vilkhovoy M,Horvath N,Shih CH,Wayman JA,Calhoun K,Swartz J,Varner JD

    更新日期:2018-08-17 00:00:00

  • Development of a Transcription Factor-Based Lactam Biosensor.

    abstract::Lactams are an important class of commodity chemicals used in the manufacture of nylons, with millions of tons produced every year. Biological production of lactams could be greatly improved by high-throughput sensors for lactam biosynthesis. To identify biosensors of lactams, we applied a chemoinformatic approach ins...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00136

    authors: Zhang J,Barajas JF,Burdu M,Ruegg TL,Dias B,Keasling JD

    更新日期:2017-03-17 00:00:00

  • GeneORator: An Effective Strategy for Navigating Protein Sequence Space More Efficiently through Boolean OR-Type DNA Libraries.

    abstract::Directed evolution requires the creation of genetic diversity and subsequent screening or selection for improved variants. For DNA mutagenesis, conventional site-directed methods implicitly utilize the Boolean AND operator (creating all mutations simultaneously), producing a combinatorial explosion in the number of ge...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00063

    authors: Currin A,Kwok J,Sadler JC,Bell EL,Swainston N,Ababi M,Day P,Turner NJ,Kell DB

    更新日期:2019-06-21 00:00:00

  • Design and Characterization of an Icosahedral Protein Cage Formed by a Double-Fusion Protein Containing Three Distinct Symmetry Elements.

    abstract::Exploiting simple types of symmetry common to many natural protein oligomers as a starting point, several recent studies have succeeded in engineering complex self-assembling protein architectures reminiscent but distinct from those evolved in the natural world. Designing symmetric protein cages with a wide range of p...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00392

    authors: Cannon KA,Nguyen VN,Morgan C,Yeates TO

    更新日期:2020-03-20 00:00:00

  • CRISPR-Cas9 Based Engineering of Actinomycetal Genomes.

    abstract::Bacteria of the order Actinomycetales are one of the most important sources of pharmacologically active and industrially relevant secondary metabolites. Unfortunately, many of them are still recalcitrant to genetic manipulation, which is a bottleneck for systematic metabolic engineering. To facilitate the genetic mani...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.5b00038

    authors: Tong Y,Charusanti P,Zhang L,Weber T,Lee SY

    更新日期:2015-09-18 00:00:00

  • Combinatory Biosynthesis of Prenylated 4-Hydroxybenzoate Derivatives by Overexpression of the Substrate-Promiscuous Prenyltransferase XimB in Engineered E. coli.

    abstract::Prenylated aromatic compounds are important intermediates in the biosynthesis of bioactive molecules such as 3-chromanols from plants, ubiquinones from prokaryotes and meroterpenoids from sponges. Biosynthesis of prenylated aromatic compounds using prokaryotic microorganisms has attracted increasing attention in the f...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00070

    authors: He BB,Bu XL,Zhou T,Li SM,Xu MJ,Xu J

    更新日期:2018-09-21 00:00:00

  • Rapid and Scalable Preparation of Bacterial Lysates for Cell-Free Gene Expression.

    abstract::Cell-free gene expression systems are emerging as an important platform for a diverse range of synthetic biology and biotechnology applications, including production of robust field-ready biosensors. Here, we combine programmed cellular autolysis with a freeze-thaw or freeze-dry cycle to create a practical, reproducib...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.7b00253

    authors: Didovyk A,Tonooka T,Tsimring L,Hasty J

    更新日期:2017-12-15 00:00:00

  • Reprogramming the Transcriptional Response to Hypoxia with a Chromosomally Encoded Cyclic Peptide HIF-1 Inhibitor.

    abstract::The cellular response to hypoxia is orchestrated by HIF-1, a heterodimeric transcription factor composed of an α and a β subunit that enables cell survival under low oxygen conditions by altering the transcription of over 300 genes. There is significant evidence that inhibition of HIF-1 would be beneficial for cancer ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00219

    authors: Mistry IN,Tavassoli A

    更新日期:2017-03-17 00:00:00

  • In-Silico Analysis and Implementation of a Multicellular Feedback Control Strategy in a Synthetic Bacterial Consortium.

    abstract::Living organisms employ endogenous negative feedback loops to maintain homeostasis despite environmental fluctuations. A pressing open challenge in Synthetic Biology is to design and implement synthetic circuits to control host cells' behavior, in order to regulate and maintain desired conditions. To cope with the hig...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00220

    authors: Fiore G,Matyjaszkiewicz A,Annunziata F,Grierson C,Savery NJ,Marucci L,di Bernardo M

    更新日期:2017-03-17 00:00:00

  • Specification and simulation of synthetic multicelled behaviors.

    abstract::Recent advances in the design and construction of synthetic multicelled systems in E. coli and S. cerevisiae suggest that it may be possible to implement sophisticated distributed algorithms with these relatively simple organisms. However, existing design frameworks for synthetic biology do not account for the unique ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb300034m

    authors: Jang SS,Oishi KT,Egbert RG,Klavins E

    更新日期:2012-08-17 00:00:00

  • Enhanced triterpene accumulation in Panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase.

    abstract::To elucidate the function of mevalonate-5-pyrophosphate decarboxylase (MVD) and farnesyl pyrophosphate synthase (FPS) in triterpene biosynthesis, the genes governing the expression of these enzymes were transformed into Panax ginseng hairy roots. All the transgenic lines showed higher expression levels of PgMVD and Pg...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb400194g

    authors: Kim YK,Kim YB,Uddin MR,Lee S,Kim SU,Park SU

    更新日期:2014-10-17 00:00:00

  • Analog Computation by DNA Strand Displacement Circuits.

    abstract::DNA circuits have been widely used to develop biological computing devices because of their high programmability and versatility. Here, we propose an architecture for the systematic construction of DNA circuits for analog computation based on DNA strand displacement. The elementary gates in our architecture include ad...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00144

    authors: Song T,Garg S,Mokhtar R,Bui H,Reif J

    更新日期:2016-08-19 00:00:00

  • Systematic Tools for Reprogramming Plant Gene Expression in a Simple Model, Marchantia polymorpha.

    abstract::We present the OpenPlant toolkit, a set of interlinked resources and techniques to develop Marchantia as testbed for bioengineering in plants. Marchantia is a liverwort, a simple plant with an open form of development that allows direct visualization of gene expression and dynamics of cellular growth in living tissues...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00511

    authors: Sauret-Güeto S,Frangedakis E,Silvestri L,Rebmann M,Tomaselli M,Markel K,Delmans M,West A,Patron NJ,Haseloff J

    更新日期:2020-04-17 00:00:00

  • Labeling RNAs in Live Cells Using Malachite Green Aptamer Scaffolds as Fluorescent Probes.

    abstract::RNAs mediate many different processes that are central to cellular function. The ability to quantify or image RNAs in live cells is very useful in elucidating such functions of RNA. RNA aptamer-fluorogen systems have been increasingly used in labeling RNAs in live cells. Here, we use the malachite green aptamer (MGA),...

    journal_title:ACS synthetic biology

    pub_type: 信件

    doi:10.1021/acssynbio.7b00237

    authors: Yerramilli VS,Kim KH

    更新日期:2018-03-16 00:00:00

  • PERSIA for Direct Fluorescence Measurements of Transcription, Translation, and Enzyme Activity in Cell-Free Systems.

    abstract::Quantification of biology's central dogma (transcription and translation) is pursued by a variety of methods. Direct, immediate, and ongoing quantification of these events is difficult to achieve. Common practice is to use fluorescent or luminescent proteins to report indirectly on prior cellular events, such as turni...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00450

    authors: Wick S,Walsh DI 3rd,Bobrow J,Hamad-Schifferli K,Kong DS,Thorsen T,Mroszczyk K,Carr PA

    更新日期:2019-05-17 00:00:00

  • Exploring the heterologous genomic space for building, stepwise, complex, multicomponent tolerance to toxic chemicals.

    abstract::Modern bioprocessing depends on superior cellular traits, many stemming from unknown genes and gene interactions. Tolerance to toxic chemicals is such an industrially important complex trait, which frequently limits the economic feasibility of producing commodity chemicals and biofuels. Chemical tolerance encompasses ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb400156v

    authors: Zingaro KA,Nicolaou SA,Yuan Y,Papoutsakis ET

    更新日期:2014-07-18 00:00:00

  • Relief of Xylose Binding to Cellobiose Phosphorylase by a Single Distal Mutation.

    abstract::Cellobiose phosphorylase (CBP) cleaves cellobiose-abundant in plant biomass-to glucose and glucose 1-phosphate. However, the pentose sugar xylose, also abundant in plant biomass, acts as a mixed-inhibitor and a substrate for the reverse reaction, limiting the industrial potential of CBP. Preventing xylose, which lacks...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00211

    authors: Chomvong K,Lin E,Blaisse M,Gillespie AE,Cate JH

    更新日期:2017-02-17 00:00:00