Nucleic Acid Detection Using CRISPR/Cas Biosensing Technologies.

Abstract:

:For infectious diseases, rapid and accurate identification of the pathogen is critical for effective management and treatment, but diagnosis remains challenging, particularly in resource-limited areas. Methods that accurately detect pathogen nucleic acids can provide robust, accurate, rapid, and ultrasensitive technologies for point-of-care diagnosis of pathogens, and thus yield information that is invaluable for disease management and treatment. Several technologies, mostly PCR-based, have been employed for pathogen detection; however, these require expensive reagents and equipment, and skilled personnel. CRISPR/Cas systems have been used for genome editing, based on their ability to accurately recognize and cleave specific DNA and RNA sequences. Moreover, following recognition of the target sequence, certain CRISPR/Cas systems including orthologues of Cas13, Cas12a, and Cas14 exhibit collateral nonspecific catalytic activities that can be employed for nucleic acid detection, for example by degradation of a labeled nucleic acid to produce a fluorescent signal. CRISPR/Cas systems are amenable to multiplexing, thereby enabling a single diagnostic test to identify multiple targets down to attomolar (10-18 mol/L) concentrations of target molecules. Developing devices that couple CRISPR/Cas with lateral flow systems may allow inexpensive, accurate, highly sensitive, in-field deployable diagnostics. These sensors have myriad applications, from human health to agriculture. In this review, we discuss the recent advances in the field of CRISPR-based biosensing technologies and highlight insights of their potential use in a myriad of applications.

journal_name

ACS Synth Biol

journal_title

ACS synthetic biology

authors

Aman R,Mahas A,Mahfouz M

doi

10.1021/acssynbio.9b00507

subject

Has Abstract

pub_date

2020-06-19 00:00:00

pages

1226-1233

issue

6

issn

2161-5063

journal_volume

9

pub_type

杂志文章
  • Engineered Bacterial Production of Volatile Methyl Salicylate.

    abstract::The engineering of microbial metabolic pathways over the last two decades has led to numerous examples of cell factories used for the production of small molecules. These molecules have an array of utility in commercial industries and as in situ expressed biomarkers or therapeutics in microbial applications. While mos...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00497

    authors: Chien T,Jones DR,Danino T

    更新日期:2021-01-15 00:00:00

  • Gene-Mediated Chemical Communication in Synthetic Protocell Communities.

    abstract::A gene-directed chemical communication pathway between synthetic protocell signaling transmitters (lipid vesicles) and receivers (proteinosomes) was designed, built and tested using a bottom-up modular approach comprising small molecule transcriptional control, cell-free gene expression, porin-directed efflux, substra...

    journal_title:ACS synthetic biology

    pub_type: 信件

    doi:10.1021/acssynbio.7b00306

    authors: Tang TD,Cecchi D,Fracasso G,Accardi D,Coutable-Pennarun A,Mansy SS,Perriman AW,Anderson JLR,Mann S

    更新日期:2018-02-16 00:00:00

  • Curli-Mediated Self-Assembly of a Fibrous Protein Scaffold for Hydroxyapatite Mineralization.

    abstract::Nanostructures formed by self-assembled peptides have been increasingly exploited as functional materials for a wide variety of applications, from biotechnology to energy. However, it is sometimes challenging to assemble free short peptides into functional supramolecular structures, since not all peptides have the abi...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00415

    authors: Abdali Z,Aminzare M,Zhu X,DeBenedictis E,Xie O,Keten S,Dorval Courchesne NM

    更新日期:2020-12-18 00:00:00

  • The Experiment Data Depot: A Web-Based Software Tool for Biological Experimental Data Storage, Sharing, and Visualization.

    abstract::Although recent advances in synthetic biology allow us to produce biological designs more efficiently than ever, our ability to predict the end result of these designs is still nascent. Predictive models require large amounts of high-quality data to be parametrized and tested, which are not generally available. Here, ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.7b00204

    authors: Morrell WC,Birkel GW,Forrer M,Lopez T,Backman TWH,Dussault M,Petzold CJ,Baidoo EEK,Costello Z,Ando D,Alonso-Gutierrez J,George KW,Mukhopadhyay A,Vaino I,Keasling JD,Adams PD,Hillson NJ,Garcia Martin H

    更新日期:2017-12-15 00:00:00

  • Assembly of Plant Enzymes in E. coli for the Production of the Valuable (-)-Podophyllotoxin Precursor (-)-Pluviatolide.

    abstract::Lignans are plant secondary metabolites with a wide range of reported health-promoting bioactivities. Traditional routes toward these natural products involve, among others, the extraction from plant sources and chemical synthesis. However, the availability of the sources and the complex chemical structures of lignans...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00354

    authors: Decembrino D,Ricklefs E,Wohlgemuth S,Girhard M,Schullehner K,Jach G,Urlacher VB

    更新日期:2020-11-20 00:00:00

  • Design and Selection of a Synthetic Feedback Loop for Optimizing Biofuel Tolerance.

    abstract::Feedback control allows cells to dynamically sense and respond to environmental changes. However, synthetic controller designs can be challenging because of implementation issues, such as determining optimal expression levels for circuit components within a feedback loop. Here, we addressed this by coupling rational d...

    journal_title:ACS synthetic biology

    pub_type: 信件

    doi:10.1021/acssynbio.7b00260

    authors: Siu Y,Fenno J,Lindle JM,Dunlop MJ

    更新日期:2018-01-19 00:00:00

  • A Lambda Red and FLP/FRT-Mediated Site-Specific Recombination System in Komagataeibacter xylinus and Its Application to Enhance the Productivity of Bacterial Cellulose.

    abstract::Komagataeibacter xylinus has received increasing attention as an important microorganism for the conversion of several carbon sources to bacterial cellulose (BC). However, BC productivity has been impeded by the lack of efficient genetic engineering techniques. In this study, a lambda Red and FLP/FRT-mediated site-spe...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00450

    authors: Liu LP,Yang X,Zhao XJ,Zhang KY,Li WC,Xie YY,Jia SR,Zhong C

    更新日期:2020-11-20 00:00:00

  • Precursor Supply for Erythromycin Biosynthesis: Engineering of Propionate Assimilation Pathway Based on Propionylation Modification.

    abstract::Erythromycin is necessary in medical treatment and known to be biosynthesized with propionyl-CoA as direct precursor. Oversupply of propionyl-CoA induced hyperpropionylation, which was demonstrated as harmful for erythromycin synthesis in Saccharopolyspora erythraea. Herein, we identified three propionyl-CoA synthetas...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00396

    authors: You D,Wang MM,Yin BC,Ye BC

    更新日期:2019-02-15 00:00:00

  • Constructing a Novel Biosynthetic Pathway for the Production of Glycolate from Glycerol in Escherichia coli.

    abstract::Glycolate is an important α-hydroxy acid with a wide range of industrial applications. The current industrial production of glycolate mainly depends on chemical synthesis, but biochemical production from renewable resources using engineered microorganisms is increasingly viewed as an attractive alternative. Crude glyc...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00404

    authors: Zhan T,Chen Q,Zhang C,Bi C,Zhang X

    更新日期:2020-09-18 00:00:00

  • Engineered Biosensors from Dimeric Ligand-Binding Domains.

    abstract::Biosensors are important components of many synthetic biology and metabolic engineering applications. Here, we report a second generation of Saccharomyces cerevisiae digoxigenin and progesterone biosensors based on destabilized dimeric ligand-binding domains that undergo ligand-induced stabilization. The biosensors, c...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00242

    authors: Jester BW,Tinberg CE,Rich MS,Baker D,Fields S

    更新日期:2018-10-19 00:00:00

  • The Resistome: A Comprehensive Database of Escherichia coli Resistance Phenotypes.

    abstract::The microbial ability to resist stressful environmental conditions and chemical inhibitors is of great industrial and medical interest. Much of the data related to mutation-based stress resistance, however, is scattered through the academic literature, making it difficult to apply systematic analyses to this wealth of...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00150

    authors: Winkler JD,Halweg-Edwards AL,Erickson KE,Choudhury A,Pines G,Gill RT

    更新日期:2016-12-16 00:00:00

  • MEGA (Multiple Essential Genes Assembling) deletion and replacement method for genome reduction in Escherichia coli.

    abstract::Top-down reduction of the bacterial genome to construct desired chassis cells is important for synthetic biology. However, the current progress in the field of genome reduction is greatly hindered by indispensable life-essential genes that are interspersed throughout the chromosomal loci. Here, we described a new meth...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb500324p

    authors: Xue X,Wang T,Jiang P,Shao Y,Zhou M,Zhong L,Wu R,Zhou J,Xia H,Zhao G,Qin Z

    更新日期:2015-06-19 00:00:00

  • Genetically Encoded Fluorescent Biosensor for Rapid Detection of Protein Expression.

    abstract::Fluorescent proteins are widely used as fusion tags to detect protein expression in vivo. To become fluorescent, these proteins must undergo chromophore maturation, a slow process with a half-time of 5 to >30 min that causes delays in real-time detection of protein expression. Here, we engineer a genetically encoded f...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00407

    authors: Eason MG,Pandelieva AT,Mayer MM,Khan ST,Garcia HG,Chica RA

    更新日期:2020-11-20 00:00:00

  • Structural Characterization of a Synthetic Tandem-Domain Bacterial Microcompartment Shell Protein Capable of Forming Icosahedral Shell Assemblies.

    abstract::Bacterial microcompartments are subcellular compartments found in many prokaryotes; they consist of a protein shell that encapsulates enzymes that perform a variety of functions. The shell protects the cell from potentially toxic intermediates and colocalizes enzymes for higher efficiency. Accordingly, it is of consid...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00011

    authors: Sutter M,McGuire S,Ferlez B,Kerfeld CA

    更新日期:2019-04-19 00:00:00

  • In-Silico Analysis and Implementation of a Multicellular Feedback Control Strategy in a Synthetic Bacterial Consortium.

    abstract::Living organisms employ endogenous negative feedback loops to maintain homeostasis despite environmental fluctuations. A pressing open challenge in Synthetic Biology is to design and implement synthetic circuits to control host cells' behavior, in order to regulate and maintain desired conditions. To cope with the hig...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00220

    authors: Fiore G,Matyjaszkiewicz A,Annunziata F,Grierson C,Savery NJ,Marucci L,di Bernardo M

    更新日期:2017-03-17 00:00:00

  • Boolean Computation in Plants Using Post-translational Genetic Control and a Visual Output Signal.

    abstract::Due to autotrophic growing capacity and extremely rich secondary metabolism, plants should be preferred targets of synthetic biology. However, developments in plants usually run below those in other taxonomic groups. In this work we engineered genetic circuits capable of logic YES, OR and AND Boolean computation in pl...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00214

    authors: Cordero T,Rosado A,Majer E,Jaramillo A,Rodrigo G,Daròs JA

    更新日期:2018-10-19 00:00:00

  • Exploiting Single Domain Antibodies as Regulatory Parts to Modulate Monoterpenoid Production in E. coli.

    abstract::Synthetic biology and metabolic engineering offer potentially green and attractive routes to the production of high value compounds. The provision of high-quality parts and pathways is crucial in enabling the biosynthesis of chemicals using synthetic biology. While a number of regulatory parts that provide control at ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00375

    authors: Wilkes J,Scott-Tucker A,Wright M,Crabbe T,Scrutton NS

    更新日期:2020-10-16 00:00:00

  • A Single Cas9-VPR Nuclease for Simultaneous Gene Activation, Repression, and Editing in Saccharomyces cerevisiae.

    abstract::Combinatorial metabolic engineering has been widely established for the development of efficient microbial cell factories to produce the products of interest by precisely regulating the expression levels of multiple genes simultaneously. Here, we report a novel multifunctional CRISPR system that enables simultaneous g...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00218

    authors: Dong C,Jiang L,Xu S,Huang L,Cai J,Lian J,Xu Z

    更新日期:2020-09-18 00:00:00

  • An Engineered Survival-Selection Assay for Extracellular Protein Expression Uncovers Hypersecretory Phenotypes in Escherichia coli.

    abstract::The extracellular expression of recombinant proteins using laboratory strains of Escherichia coli is now routinely achieved using naturally secreted substrates, such as YebF or the osmotically inducible protein Y (OsmY), as carrier molecules. However, secretion efficiency through these pathways needs to be improved fo...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00366

    authors: Natarajan A,Haitjema CH,Lee R,Boock JT,DeLisa MP

    更新日期:2017-05-19 00:00:00

  • Development of an artificial calcium-dependent transcription factor to detect sustained intracellular calcium elevation.

    abstract::The development of a synthetic transcription factor that responds to intracellular calcium signals enables analyzing cellular events at the single-cell level or "rewiring" the intracellular information networks. In this study, we developed the calcium-dependent transcription factor (CaTF), which was cleaved by calpain...

    journal_title:ACS synthetic biology

    pub_type: 信件

    doi:10.1021/sb500070c

    authors: Suzuki S,Murotomi K,Nakajima Y,Kawai K,Ohta K,Warita K,Miki T,Takeuchi Y

    更新日期:2014-10-17 00:00:00

  • Lessons from Two Design-Build-Test-Learn Cycles of Dodecanol Production in Escherichia coli Aided by Machine Learning.

    abstract::The Design-Build-Test-Learn (DBTL) cycle, facilitated by exponentially improving capabilities in synthetic biology, is an increasingly adopted metabolic engineering framework that represents a more systematic and efficient approach to strain development than historical efforts in biofuels and biobased products. Here, ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00020

    authors: Opgenorth P,Costello Z,Okada T,Goyal G,Chen Y,Gin J,Benites V,de Raad M,Northen TR,Deng K,Deutsch S,Baidoo EEK,Petzold CJ,Hillson NJ,Garcia Martin H,Beller HR

    更新日期:2019-06-21 00:00:00

  • The Formal Language and Design Principles of Autonomous DNA Walker Circuits.

    abstract::Simple computation can be performed using the interactions between single-stranded molecules of DNA. These interactions are typically toehold-mediated strand displacement reactions in a well-mixed solution. We demonstrate that a DNA circuit with tethered reactants is a distributed system and show how it can be describ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.5b00275

    authors: Boemo MA,Lucas AE,Turberfield AJ,Cardelli L

    更新日期:2016-08-19 00:00:00

  • Sequence Specific Modeling of E. coli Cell-Free Protein Synthesis.

    abstract::Cell-free protein synthesis (CFPS) is a widely used research tool in systems and synthetic biology. However, if CFPS is to become a mainstream technology for applications such as point of care manufacturing, we must understand the performance limits and costs of these systems. Toward this question, we used sequence sp...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.7b00465

    authors: Vilkhovoy M,Horvath N,Shih CH,Wayman JA,Calhoun K,Swartz J,Varner JD

    更新日期:2018-08-17 00:00:00

  • Biosynthesis of antimycins with a reconstituted 3-formamidosalicylate pharmacophore in Escherichia coli.

    abstract::Antimycins are a family of natural products generated from a hybrid nonribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) assembly line. Although they possess an array of useful biological activities, their structural complexity makes chemical synthesis challenging, and their biosynthesis has thus far been ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb5003136

    authors: Liu J,Zhu X,Seipke RF,Zhang W

    更新日期:2015-05-15 00:00:00

  • An Expanded Synthetic Biology Toolkit for Gene Expression Control in Acetobacteraceae.

    abstract::The availability of different host chassis will greatly expand the range of applications in synthetic biology. Members of the Acetobacteraceae family of Gram-negative bacteria form an attractive class of nonmodel microorganisms that can be exploited to produce industrial chemicals, food and beverage, and biomaterials....

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00168

    authors: Teh MY,Ooi KH,Danny Teo SX,Bin Mansoor ME,Shaun Lim WZ,Tan MH

    更新日期:2019-04-19 00:00:00

  • Multiplex iterative plasmid engineering for combinatorial optimization of metabolic pathways and diversification of protein coding sequences.

    abstract::Engineering complex biological systems typically requires combinatorial optimization to achieve the desired functionality. Here, we present Multiplex Iterative Plasmid Engineering (MIPE), which is a highly efficient and customized method for combinatorial diversification of plasmid sequences. MIPE exploits ssDNA media...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb400051t

    authors: Li Y,Gu Q,Lin Z,Wang Z,Chen T,Zhao X

    更新日期:2013-11-15 00:00:00

  • Repurposing Synechocystis PCC6803 UirS-UirR as a UV-Violet/Green Photoreversible Transcriptional Regulatory Tool in E. coli.

    abstract::We have previously engineered green/red and red/far red photoreversible E. coli phytochrome and cyanobacteriochrome (CBCR) two-component systems (TCSs) and utilized them to program tailor-made gene expression signals for gene circuit characterization. Here, we transport the UV-violet/green photoreversible CBCR TCS Uir...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00068

    authors: Ramakrishnan P,Tabor JJ

    更新日期:2016-07-15 00:00:00

  • A tetO Toolkit To Alter Expression of Genes in Saccharomyces cerevisiae.

    abstract::Strategies to optimize a metabolic pathway often involve building a large collection of strains, each containing different versions of sequences that regulate the expression of pathway genes. Here, we develop reagents and methods to carry out this process at high efficiency in the yeast Saccharomyces cerevisiae. We id...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb500363y

    authors: Cuperus JT,Lo RS,Shumaker L,Proctor J,Fields S

    更新日期:2015-07-17 00:00:00

  • Enhanced triterpene accumulation in Panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase.

    abstract::To elucidate the function of mevalonate-5-pyrophosphate decarboxylase (MVD) and farnesyl pyrophosphate synthase (FPS) in triterpene biosynthesis, the genes governing the expression of these enzymes were transformed into Panax ginseng hairy roots. All the transgenic lines showed higher expression levels of PgMVD and Pg...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb400194g

    authors: Kim YK,Kim YB,Uddin MR,Lee S,Kim SU,Park SU

    更新日期:2014-10-17 00:00:00

  • Artificial conversion of the mating-type of Saccharomyces cerevisiae without autopolyploidization.

    abstract::Crossbreeding is a classical yeast hybridization procedure, where the mating of haploid cells of opposite mating-type, MATa and MATα cells, produces a new heterozygous diploid. Here, we describe a method to generate haploid MATa and MATα cells using mating-type conversion caused by expression of the HO gene, which enc...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb400016j

    authors: Fukuda N,Matsukura S,Honda S

    更新日期:2013-12-20 00:00:00