Mechanical properties of Indonesian-made narrow dynamic compression plate.

Abstract:

:Osteosynthesis plates are clinically used to fixate and position a fractured bone. They should have the ability to withstand cyclic loads produced by muscle contractions and total body weight. The very high demand for osteosynthesis plates in developing countries in general and in Indonesia in particular necessitates the utilisation of local products. In this paper, we investigated the mechanical properties, i.e. proportional limit and fatigue strength of Indonesian-made Narrow Dynamic Compression Plates (Narrow DCP) as one of the most frequently used osteosynthesis plates, in comparison to the European AO standard plate, and its relationship to geometry, micro structural features and surface defects of the plates. All Indonesian-made plates appeared to be weaker than the standard Narrow DCP because they consistently failed at lower stresses. Surface defects did not play a major role in this, although the polishing of the Indonesian Narrow DCP was found to be poor. The standard plate showed indications of cold deformation from the production process in contrast to the Indonesian plates, which might be the first reason for the differences in strength. This is confirmed by hardness measurements. A second reason could be the use of an inferior version of stainless steel. The Indonesian plates showed lower mechanical behaviour compared to the AO-plates. These findings could initiate the development of improved Indonesian manufactured DCP-plates with properties comparable to commonly used plates, such as the standard European AO-plates.

authors

Dewo P,van der Houwen EB,Sharma PK,Magetsari R,Bor TC,Vargas-Llona LD,van Horn JR,Busscher HJ,Verkerke GJ

doi

10.1016/j.jmbbm.2012.04.018

subject

Has Abstract

pub_date

2012-09-01 00:00:00

pages

93-101

eissn

1751-6161

issn

1878-0180

pii

S1751-6161(12)00139-7

journal_volume

13

pub_type

杂志文章
  • Packing of muscles in the rabbit shank influences three-dimensional architecture of M. soleus.

    abstract::Isolated and packed muscles (e.g. in the calf) exhibit different three-dimensional muscle shapes. In packed muscles, cross-sections are more angular compared to the more elliptical ones in isolated muscles. As far as we know, it has not been examined yet, whether the shape of the muscle in its packed condition influen...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.04.006

    authors: Wick C,Böl M,Müller F,Blickhan R,Siebert T

    更新日期:2018-07-01 00:00:00

  • Reconstruction of medial patello-femoral ligament: Comparison of two surgical techniques.

    abstract::The medial patello-femoral ligament is considered the most important passive patellar stabilizer and its proper functionality is essential for the patello-femoral joint stability. In this work, 18 human knees were randomly divided into two groups and reconstructed through two different surgical techniques: the "Throug...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.02.009

    authors: Criscenti G,De Maria C,Sebastiani E,Tei M,Placella G,Speziali A,Vozzi G,Cerulli G

    更新日期:2016-06-01 00:00:00

  • A new longitudinal variation in the structure of collagen fibrils and its relationship to locations of mechanical damage susceptibility.

    abstract::The hierarchical architecture of the collagen fibril is well understood, involving non-integer staggering of collagen molecules which results in a 67 nm periodic molecular density variation termed D-banding. Other than this variation, collagen fibrils are considered to be homogeneous at the micro-scale and beyond. Int...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.103849

    authors: Baldwin SJ,Sampson J,Peacock CJ,Martin ML,Veres SP,Lee JM,Kreplak L

    更新日期:2020-10-01 00:00:00

  • New regime in the mechanical behavior of skin: strain-softening occurring before strain-hardening.

    abstract::We report linear and non-linear shear tests on rat skin, evidencing a strain-softening regime, from 1% to 50% strain, followed by a strong strain-hardening regime, leading to a 'deck chair-shaped' stress-strain curve. The strain-softening regime was never reported as such in the literature, possibly mistaken for the l...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.12.021

    authors: Nicolle S,Decorps J,Fromy B,Palierne JF

    更新日期:2017-05-01 00:00:00

  • Effect of grinding with diamond-disc and -bur on the mechanical behavior of a Y-TZP ceramic.

    abstract::This study compared the effects of grinding on the surface micromorphology, phase transformation (t→m), biaxial flexural strength and structural reliability (Weibull analysis) of a Y-TZP (Lava) ceramic using diamond-discs and -burs. 170 discs (15×1.2mm) were produced and divided into 5 groups: without treatment (Ctrl,...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2014.05.010

    authors: Pereira GK,Amaral M,Simoneti R,Rocha GC,Cesar PF,Valandro LF

    更新日期:2014-09-01 00:00:00

  • A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization.

    abstract::Cosserat models of cancellous bone are constructed, relying on micromechanical approaches in order to investigate microstructure-related scale effects on the macroscopic properties of bone. The derivation of the effective mechanical properties of cancellous bone considered as a cellular solid modeled as two-dimensiona...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2012.07.012

    authors: Goda I,Assidi M,Belouettar S,Ganghoffer JF

    更新日期:2012-12-01 00:00:00

  • Cutting mechanics of wood by beetle larval mandibles.

    abstract::Wood boring is a feature of several insect species and is a major cause of severe and irreparable damage to trees. Adult females typically deposit their eggs on the stem surface under bark scales. The emerging hatchlings live within wood during their larval phase, avoiding possible predation, whilst continually boring...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104027

    authors: Kundanati L,Chahare NR,Jaddivada S,Karkisaval AG,Sridhar R,Pugno NM,Gundiah N

    更新日期:2020-12-01 00:00:00

  • De novo topology optimization of total ossicular replacement prostheses.

    abstract::Conductive hearing loss, due to middle ear pathologies or traumas, affects more than 5% of the population worldwide. Passive prostheses to replace the ossicular chain mainly rely on piston-like titanium and/or hydroxyapatite devices, which in the long term suffer from extrusion. Although the basic shape of such device...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.103541

    authors: Milazzo M,Muyshondt PGG,Carstensen J,Dirckx JJJ,Danti S,Buehler MJ

    更新日期:2020-03-01 00:00:00

  • Structure and mechanical behaviors of protective armored pangolin scales and effects of hydration and orientation.

    abstract::As natural flexible dermal armor, pangolin scales provide effective protection against predatory threats and possess other notable properties such as anti-adhesion and wear-resistance. In this study, the structure, mechanical properties, deformation and damage behaviors of pangolin scales were systematically investiga...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.11.013

    authors: Liu ZQ,Jiao D,Weng ZY,Zhang ZF

    更新日期:2016-03-01 00:00:00

  • Manipulation of mechanical compliance of elastomeric PGS by incorporation of halloysite nanotubes for soft tissue engineering applications.

    abstract::Poly (glycerol sebacate) (PGS) is a promising elastomer for use in soft tissue engineering. However, it is difficult to achieve with PGS a satisfactory balance of mechanical compliance and degradation rate that meet the requirements of soft tissue engineering. In this work, we have synthesised a new PGS nanocomposite ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.05.038

    authors: Chen QZ,Liang SL,Wang J,Simon GP

    更新日期:2011-11-01 00:00:00

  • Effects of test sample shape and surface production method on the fatigue behaviour of PMMA bone cement.

    abstract::There is no consensus over the optimal criterion to define the fatigue life of bone cement in vitro. Fatigue testing samples have been made into various shapes using different surface preparation techniques with little attention being paid to the importance of these variations on the fatigue results. The present study...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.08.023

    authors: Sheafi EM,Tanner KE

    更新日期:2014-01-01 00:00:00

  • A finite element analysis of diaphragmatic hernia repair on an animal model.

    abstract::The diaphragm is a mammalian skeletal muscle that plays a fundamental role in the process of respiration. Alteration of its mechanical properties due to a diaphragmatic hernia contributes towards compromising its respiratory functions, leading to the need for surgical intervention to restore the physiological conditio...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.06.005

    authors: de Cesare N,Trevisan C,Maghin E,Piccoli M,Pavan PG

    更新日期:2018-10-01 00:00:00

  • Mechanical properties and in vitro bioactivity of injectable and self-setting calcium sulfate/nano-HA/collagen bone graft substitute.

    abstract::Calcium sulfate hemihydrate (CSH) was introduced into the mineralized collagen (nHAC) to prepare an injectable and self-setting in situ bone graft substitute. The mechanical properties of materials, which are dependant on the L/S ratio, the content of nHAC and setting accelerator, were discussed based on the satisfyin...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.12.007

    authors: Hu NM,Chen Z,Liu X,Liu H,Lian X,Wang X,Cui FZ

    更新日期:2012-08-01 00:00:00

  • Mechanical properties and thermal behaviour of PEGDMA hydrogels for potential bone regeneration application.

    abstract::Poly(ethylene glycol) hydrogels are currently under investigation as possible scaffold materials for bone regeneration. The main purpose of this research was to analyse the mechanical properties and thermal behaviour of novel photopolymerised poly(ethylene glycol) dimethacrylate (PEGDMA) based hydrogels. The effect of...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.04.004

    authors: Killion JA,Geever LM,Devine DM,Kennedy JE,Higginbotham CL

    更新日期:2011-10-01 00:00:00

  • Numerical modeling of bone as a multiscale poroelastic material by the homogenization technique.

    abstract::Bone is a complex material showing a hierarchical and porous structure but also a natural ability to remodel thanks to cells sensitive to fluid flows. Based on these characteristics, a multiscale numerical model has been developed in order to represent the bone response under mechanical solicitation. It relies on the ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.12.015

    authors: Perrin E,Bou-Saïd B,Massi F

    更新日期:2019-03-01 00:00:00

  • The effect of equiaxial stretching on the osteogenic differentiation and mechanical properties of human adipose stem cells.

    abstract::Although mechanical cues are known to affect stem cell fate and mechanobiology, the significance of such stimuli on the osteogenic differentiation of human adipose stem cells (hASCs) remains unclear. In this study, we investigated the effect of long-term mechanical stimulation on the attachment, osteogenic differentia...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.04.016

    authors: Virjula S,Zhao F,Leivo J,Vanhatupa S,Kreutzer J,Vaughan TJ,Honkala AM,Viehrig M,Mullen CA,Kallio P,McNamara LM,Miettinen S

    更新日期:2017-08-01 00:00:00

  • Biomechanical, structural and biological characterisation of a new silk fibroin scaffold for meniscal repair.

    abstract::Meniscal injury is typically treated surgically via partial meniscectomy, which has been shown to cause cartilage degeneration in the long-term. Consequently, research has focused on meniscal prevention and replacement. However, none of the materials or implants developed for meniscal replacement have yet achieved wid...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.06.041

    authors: Warnecke D,Stein S,Haffner-Luntzer M,de Roy L,Skaer N,Walker R,Kessler O,Ignatius A,Dürselen L

    更新日期:2018-10-01 00:00:00

  • Nitinol stent design - understanding axial buckling.

    abstract::Nitinol׳s superelastic properties permit self-expanding stents to be crimped without plastic deformation, but its nonlinear properties can contribute towards stent buckling. This study investigates the axial buckling of a prototype tracheobronchial nitinol stent design during crimping, with the objective of eliminatin...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2014.08.029

    authors: McGrath DJ,O Brien B,Bruzzi M,McHugh PE

    更新日期:2014-12-01 00:00:00

  • Heterogeneous modeling based prosthesis design with porosity and material variation.

    abstract::The work proposes the development of heterogeneous bio-implants with the aim to minimize stress shielding effect and enhance bone ingrowth. Stress shielding in the implant can be minimized by reducing the overall stiffness of the implant, which is achieved here by varying the material based on stress distribution acro...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.07.029

    authors: Singh SK,Tandon P

    更新日期:2018-11-01 00:00:00

  • Development and characterization of cross-linked gellan gum and retrograded starch blend hydrogels for drug delivery applications.

    abstract::The retrogradation of high amylose starch (5% or 10%), by isothermal cycles at 4°C (method 1) or by alternating thermal cycles (method 2) was efficient and promoted important structural modifications. Hydrogels of gellan gum and starch retrograded blends, containing or not ketoprofen, were prepared by ionic and dual c...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.08.005

    authors: Oliveira Cardoso VM,Stringhetti Ferreira Cury B,Evangelista RC,Daflon Gremião MP

    更新日期:2017-01-01 00:00:00

  • Myoglobin and troponin concentrations are increased in early stage deep tissue injury.

    abstract::Pressure-induced deep tissue injury is a form of pressure ulcer which is difficult to detect and diagnose at an early stage, before the wound has severely progressed and becomes visible at the skin surface. At the present time, no such detection technique is available. To test the hypothesis that muscle damage biomark...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.12.026

    authors: Traa WA,Strijkers GJ,Bader DL,Oomens CWJ

    更新日期:2019-04-01 00:00:00

  • A projection method to extract biological membrane models from 3D material models.

    abstract::This paper presents a projection method for deriving membrane models from the corresponding three-dimensional material models. As a particular example the anisotropic Holzapfel-Gasser-Ogden model is considered. The projection procedure is based on the kinematical and constitutive assumptions of a general membrane theo...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.09.001

    authors: Roohbakhshan F,Duong TX,Sauer RA

    更新日期:2016-05-01 00:00:00

  • Viscoelastic parameter identification of human brain tissue.

    abstract::Understanding the constitutive behavior of the human brain is critical to interpret the physical environment during neurodevelopment, neurosurgery, and neurodegeneration. A wide variety of constitutive models has been proposed to characterize the brain at different temporal and spatial scales. Yet, their model paramet...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.07.014

    authors: Budday S,Sommer G,Holzapfel GA,Steinmann P,Kuhl E

    更新日期:2017-10-01 00:00:00

  • The nonlinear flexural response of a whole teleost fish: Contribution of scales and skin.

    abstract::The scaled skin of fish is an intricate system that provides mechanical protection against hard and sharp puncture, while maintaining the high flexural compliance required for unhindered locomotion. This unusual combination of local hardness and global compliance makes fish skin an interesting model for bioinspired pr...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.06.014

    authors: Szewciw L,Zhu D,Barthelat F

    更新日期:2017-12-01 00:00:00

  • Microstructure, mechanical and wear properties of laser surface melted Ti6Al4V alloy.

    abstract::Laser surface melting (LSM) of Ti6Al4V alloy was carried out with an aim to improve properties such as microstructure and wear for implant applications. The alloy substrate was melted at 250W and 400W at a scan velocity of 5mm/s, with input energy of 42J/mm(2) and 68J/mm(2), respectively. The results showed that equia...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.12.001

    authors: Balla VK,Soderlind J,Bose S,Bandyopadhyay A

    更新日期:2014-04-01 00:00:00

  • Transient stiffening of cartilage during joint articulation: A microindentation study.

    abstract::As a mechanoactive tissue, articular cartilage undergoes compression and shear on a daily basis. With the advent of high resolution and sensitive mechanical testing methods, such as micro- and nanoindentation, it has become possible to assess changes in small-scale mechanical properties due to compression and shear of...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104113

    authors: Yuh C,Laurent MP,Espinosa-Marzal RM,Chubinskaya S,Wimmer MA

    更新日期:2021-01-01 00:00:00

  • Influence of cold rolling and ageing treatment on microstructure and mechanical properties of Ti-30Nb-5Ta-6Zr alloy.

    abstract::In this study, the relationship between deformation mechanism and rolling reductions was investigated, and the effects of deformation reductions on the microstructure and mechanical properties of the alloys both cold rolled and aged were revealed. It was found that the equiaxed β grains of the Ti-30Nb-5Ta-6Zr alloy ha...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.06.006

    authors: Wang Y,Zhao J,Dai S,Chen F,Yu X,Zhang Y

    更新日期:2013-11-01 00:00:00

  • Extrusion of the biodegradable ZnMg0.8Ca0.2 alloy - The influence of extrusion parameters on microstructure and mechanical characteristics.

    abstract::The Zn-based alloys, alloyed with the elements of the 2nd group of the periodic table, are considered as potential biodegradable materials suitable for the fabrication of small orthopaedic implants or cardiovascular stents. Unfortunately, the as-cast Zn-based alloys do not fulfil the requirements for mechanical proper...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.103796

    authors: Čapek J,Kubásek J,Pinc J,Drahokoupil J,Čavojský M,Vojtěch D

    更新日期:2020-08-01 00:00:00

  • Nanomechanical properties of human skin and introduction of a novel hair indenter.

    abstract::The mechanical resistance of the stratum corneum, the outermost layer of skin, to deformation has been evaluated at different length scales using Atomic Force Microscopy. Nanomechanical surface mapping was first conducted using a sharp silicon tip and revealed that Young׳s modulus of the stratum corneum varied over th...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.09.014

    authors: Álvarez-Asencio R,Wallqvist V,Kjellin M,Rutland MW,Camacho A,Nordgren N,Luengo GS

    更新日期:2016-02-01 00:00:00

  • Wear characterization and contact surfaces analysis of menisci and femoral retrieved components in bi-condylar knee prostheses.

    abstract:PURPOSE:Although total knee arthroplasty is a well-practiced surgical procedure, material properties and surface topography can contribute to the wear mechanisms and the implant failure. It has been advised that an increased femoral component's surface roughness of total knee prostheses may be a contributing factor to ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.103959

    authors: Affatato S,Ruzzi S,Milosevic M,Ruggiero A

    更新日期:2020-10-01 00:00:00