Ablation of intact hypothalamic and/or hindbrain TrkB signaling leads to perturbations in energy balance.

Abstract:

OBJECTIVE:Brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin receptor kinase B (TrkB), play a paramount role in the central regulation of energy balance. Despite the substantial body of genetic evidence implicating BDNF- or TrkB-deficiency in human obesity, the critical brain region(s) contributing to the endogenous role of BDNF/TrkB signaling in metabolic control remain unknown. METHODS:We assessed the importance of intact hypothalamic or hindbrain TrkB signaling in central regulation of energy balance by generating Nkx2.1-Ntrk2-/- and Phox2b-Ntrk2+/- mice, respectively, and comparing metabolic parameters (body weight, adiposity, food intake, energy expenditure and glucose homeostasis) under high-fat diet or chow fed conditions. RESULTS:Our data show that when fed a high-fat diet, male and female Nkx2.1-Ntrk2-/- mice have significantly increased body weight and adiposity that is likely driven by reduced locomotor activity and core body temperature. When maintained on a chow diet, female Nkx2.1-Ntrk2-/- mice exhibit an increased body weight and adiposity phenotype more robust than in males, which is accompanied by hyperphagia that precedes the onset of a body weight difference. In addition, under both diet conditions, Nkx2.1-Ntrk2-/- mice show increased blood glucose, serum insulin and leptin levels. Mice with complete hindbrain TrkB-deficiency (Phox2b-Ntrk2-/-) are perinatal lethal, potentially indicating a vital role for TrkB in visceral motor neurons that control cardiovascular, respiratory, and digestive functions during development. Phox2b-Ntrk2+/- heterozygous mice are similar in body weight, adiposity and glucose homeostasis parameters compared to wild type littermate controls when maintained on a high-fat or chow diet. Interestingly, despite the absence of a body weight difference, Phox2b-Ntrk2+/- heterozygous mice exhibit pronounced hyperphagia. CONCLUSION:Taken together, our findings suggest that the hypothalamus is a key brain region involved in endogenous BDNF/TrkB signaling and central metabolic control and that endogenous hindbrain TrkB likely plays a role in modulating food intake and survival of mice. Our findings also show that female mice lacking TrkB in the hypothalamus have a more robust metabolic phenotype.

journal_name

Mol Metab

journal_title

Molecular metabolism

authors

Ozek C,Zimmer DJ,De Jonghe BC,Kalb RG,Bence KK

doi

10.1016/j.molmet.2015.08.002

subject

Has Abstract

pub_date

2015-08-18 00:00:00

pages

867-80

issue

11

issn

2212-8778

pii

S2212-8778(15)00156-8

journal_volume

4

pub_type

杂志文章
  • Glycerol not lactate is the major net carbon source for gluconeogenesis in mice during both short and prolonged fasting.

    abstract:OBJECTIVE:Fasting results in major metabolic changes including a switch from glycogenolysis to gluconeogenesis to maintain glucose homeostasis. However, the relationship between the length of fasting and the relative contribution of gluconeogenic substrates remains unclear. We investigated the relative contribution of ...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2019.11.005

    authors: Wang Y,Kwon H,Su X,Wondisford FE

    更新日期:2020-01-01 00:00:00

  • Gut microbiota and glucometabolic alterations in response to recurrent partial sleep deprivation in normal-weight young individuals.

    abstract:OBJECTIVE:Changes to the microbial community in the human gut have been proposed to promote metabolic disturbances that also occur after short periods of sleep loss (including insulin resistance). However, whether sleep loss affects the gut microbiota remains unknown. METHODS:In a randomized within-subject crossover s...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2016.10.003

    authors: Benedict C,Vogel H,Jonas W,Woting A,Blaut M,Schürmann A,Cedernaes J

    更新日期:2016-10-24 00:00:00

  • (11)C-meta-hydroxyephedrine PET/CT imaging allows in vivo study of adaptive thermogenesis and white-to-brown fat conversion.

    abstract::Several lines of evidence suggest that novel pharmacological approaches aimed at converting white adipose tissue (WAT) into brown adipose tissue (BAT) may represent an effective therapeutic strategy for obesity and related disorders. ((18))F-fluorodeoxyglucose ((18)F-FDG) is the only positron emission tomography (PET)...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2013.04.002

    authors: Quarta C,Lodi F,Mazza R,Giannone F,Boschi L,Nanni C,Nisoli E,Boschi S,Pasquali R,Fanti S,Iozzo P,Pagotto U

    更新日期:2013-04-21 00:00:00

  • Distinct adipocyte progenitor cells are associated with regional phenotypes of perivascular aortic fat in mice.

    abstract:OBJECTIVE:Perivascular adipose tissue depots around the aorta are regionally distinct and have specific functional properties. Thoracic aorta perivascular adipose tissue (tPVAT) expresses higher levels of thermogenic genes and lower levels of inflammatory genes than abdominal aorta perivascular adipose tissue (aPVAT). ...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2017.12.014

    authors: Tran KV,Fitzgibbons T,Min SY,DeSouza T,Corvera S

    更新日期:2018-03-01 00:00:00

  • Metabolic stress activates an ERK/hnRNPK/DDX3X pathway in pancreatic β cells.

    abstract:OBJECTIVE:Pancreatic β cell failure plays a central role in the development of type 2 diabetes (T2D). While the transcription factors shaping the β cell gene expression program have received much attention, the post-transcriptional controls that are activated in β cells during stress are largely unknown. We recently id...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2019.05.009

    authors: Good AL,Haemmerle MW,Oguh AU,Doliba NM,Stoffers DA

    更新日期:2019-08-01 00:00:00

  • FGF21 resistance is not mediated by downregulation of beta-klotho expression in white adipose tissue.

    abstract:OBJECTIVE:Fibroblast growth factor 21 (FGF21) is an endocrine hormone that regulates metabolic homeostasis. Previous work has suggested that impairment of FGF21 signaling in adipose tissue may occur through downregulation of the obligate FGF21 co-receptor, β-klotho, which leads to "FGF21 resistance" during the onset of...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2017.03.009

    authors: Markan KR,Naber MC,Small SM,Peltekian L,Kessler RL,Potthoff MJ

    更新日期:2017-03-27 00:00:00

  • Regulation of muscle and metabolic physiology by hypothalamic erythropoietin independently of its peripheral action.

    abstract:OBJECTIVE:The glycoprotein hormone erythropoietin (EPO) is required for erythropoiesis, and the kidney is the primary site of adult EPO synthesis. Limited evidence has suggested that EPO could be detectable in the brain under certain conditions, but it remains unknown if the brain might have its own EPO system for biol...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2019.12.001

    authors: Wang Z,Khor S,Cai D

    更新日期:2020-02-01 00:00:00

  • Granulocyte colony-stimulating factor (G-CSF): A saturated fatty acid-induced myokine with insulin-desensitizing properties in humans.

    abstract:OBJECTIVE:Circulating long-chain free fatty acids (FFAs) are important metabolic signals that acutely enhance fatty acid oxidation, thermogenesis, energy expenditure, and insulin secretion. However, if chronically elevated, they provoke inflammation, insulin resistance, and β-cell failure. Moreover, FFAs act via multip...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2016.02.001

    authors: Ordelheide AM,Gommer N,Böhm A,Hermann C,Thielker I,Machicao F,Fritsche A,Stefan N,Häring HU,Staiger H

    更新日期:2016-02-13 00:00:00

  • Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer.

    abstract:BACKGROUND:The TP53 gene is one of the most commonly inactivated tumor suppressors in human cancers. p53 functions during cancer progression have been linked to a variety of transcriptional and non-transcriptional activities that lead to the tight control of cell proliferation, senescence, DNA repair, and cell death. H...

    journal_title:Molecular metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.molmet.2019.10.002

    authors: Lacroix M,Riscal R,Arena G,Linares LK,Le Cam L

    更新日期:2020-03-01 00:00:00

  • A spontaneous leptin receptor point mutation causes obesity and differentially affects leptin signaling in hypothalamic nuclei resulting in metabolic dysfunctions distinct from db/db mice.

    abstract:OBJECTIVE:Leptin (Lep) plays a crucial role in controlling food intake and energy expenditure. Defective Lep/LepRb-signaling leads to fat accumulation, massive obesity, and the development of diabetes. We serendipitously noticed spontaneous development of obesity similar to LepR-deficient (db/db) mice in offspring from...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2019.04.010

    authors: Piattini F,Le Foll C,Kisielow J,Rosenwald E,Nielsen P,Lutz T,Schneider C,Kopf M

    更新日期:2019-07-01 00:00:00

  • Skeletal muscle autophagy and mitophagy in endurance-trained runners before and after a high-fat meal.

    abstract:OBJECTIVE:We tested the hypothesis that skeletal muscle of endurance-trained male runners would exhibit elevated autophagy and mitophagy markers, which would be associated with greater metabolic flexibility following a high-fat meal (HFM). METHODS:Muscle biopsies were collected to determine differences in autophagy an...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2017.10.006

    authors: Tarpey MD,Davy KP,McMillan RP,Bowser SM,Halliday TM,Boutagy NE,Davy BM,Frisard MI,Hulver MW

    更新日期:2017-12-01 00:00:00

  • GPR142 prompts glucagon-like Peptide-1 release from islets to improve β cell function.

    abstract:OBJECTIVE:GPR142 agonists are being pursued as novel diabetes therapies by virtue of their insulin secretagogue effects. But it is undetermined whether GPR142's functions in pancreatic islets are limited to regulating insulin secretion. The current study expands research on its action. METHODS AND RESULTS:We demonstra...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2018.02.008

    authors: Lin HV,Wang J,Wang J,Li W,Wang X,Alston JT,Thomas MK,Briere DA,Syed SK,Efanov AM

    更新日期:2018-05-01 00:00:00

  • Melanocortin-3 receptors in the limbic system mediate feeding-related motivational responses during weight loss.

    abstract:OBJECTIVE:Appetitive responses to weight loss are mediated by a nutrient-sensing neural network comprised of melanocortin neurons. The role of neural melanocortin-3 receptors (MC3R) in mediating these responses is enigmatic. Mc3r knockout mice exhibit a paradoxical phenotype of obesity and reduced feeding-related behav...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2016.05.002

    authors: Mavrikaki M,Girardet C,Kern A,Faruzzi Brantley A,Miller CA,Macarthur H,Marks DL,Butler AA

    更新日期:2016-05-12 00:00:00

  • Action and therapeutic potential of oxyntomodulin.

    abstract::Oxyntomodulin (OXM) is a peptide hormone released from the gut in post-prandial state that activates both the glucagon-like peptide-1 receptor (GLP1R) and the glucagon receptor (GCGR) resulting in superior body weight lowering to selective GLP1R agonists. OXM reduces food intake and increases energy expenditure in hum...

    journal_title:Molecular metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.molmet.2013.12.001

    authors: Pocai A

    更新日期:2013-12-14 00:00:00

  • Loss of dorsomedial hypothalamic GLP-1 signaling reduces BAT thermogenesis and increases adiposity.

    abstract:OBJECTIVE:Glucagon-like peptide-1 (GLP-1) neurons in the hindbrain densely innervate the dorsomedial hypothalamus (DMH), a nucleus strongly implicated in body weight regulation and the sympathetic control of brown adipose tissue (BAT) thermogenesis. Therefore, DMH GLP-1 receptors (GLP-1R) are well placed to regulate en...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2018.03.008

    authors: Lee SJ,Sanchez-Watts G,Krieger JP,Pignalosa A,Norell PN,Cortella A,Pettersen KG,Vrdoljak D,Hayes MR,Kanoski SE,Langhans W,Watts AG

    更新日期:2018-05-01 00:00:00

  • Brown adipocytes can display a mammary basal myoepithelial cell phenotype in vivo.

    abstract:OBJECTIVE:Previous work has suggested that white adipocytes may also show a mammary luminal secretory cell phenotype during lactation. The capacity of brown and beige/brite adipocytes to display a mammary cell phenotype and the levels at which they demonstrate such phenotypes in vivo is currently unknown. METHODS:To i...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2017.07.015

    authors: Li L,Li B,Li M,Niu C,Wang G,Li T,Król E,Jin W,Speakman JR

    更新日期:2017-10-01 00:00:00

  • Lipolysis sensation by white fat afferent nerves triggers brown fat thermogenesis.

    abstract:OBJECTIVE:Metabolic challenges, such as a cold environment, stimulate sympathetic neural efferent activity to white adipose tissue (WAT) to drive lipolysis, thereby increasing the availability of free fatty acids as one source of fuel for brown adipose tissue (BAT) thermogenesis. WAT is also innervated by sensory nerve...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2016.06.013

    authors: Garretson JT,Szymanski LA,Schwartz GJ,Xue B,Ryu V,Bartness TJ

    更新日期:2016-06-30 00:00:00

  • Cannabinoid control of brain bioenergetics: Exploring the subcellular localization of the CB1 receptor.

    abstract::Brain mitochondrial activity is centrally involved in the central control of energy balance. When studying mitochondrial functions in the brain, however, discrepant results might be obtained, depending on the experimental approaches. For instance, immunostaining experiments and biochemical isolation of organelles expo...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2014.03.007

    authors: Hebert-Chatelain E,Reguero L,Puente N,Lutz B,Chaouloff F,Rossignol R,Piazza PV,Benard G,Grandes P,Marsicano G

    更新日期:2014-04-02 00:00:00

  • The insulin like growth factor and binding protein family: Novel therapeutic targets in obesity & diabetes.

    abstract:BACKGROUND:Recent changes in nutrition and lifestyle have provoked an unprecedented increase in the prevalence of obesity and metabolic disorders. Recognition of the adverse effects on health has prompted intense efforts to understand the molecular determinants of insulin sensitivity and dysglycemia. In many respects, ...

    journal_title:Molecular metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.molmet.2018.10.008

    authors: Haywood NJ,Slater TA,Matthews CJ,Wheatcroft SB

    更新日期:2019-01-01 00:00:00

  • Deletion of the glucagon receptor gene before and after experimental diabetes reveals differential protection from hyperglycemia.

    abstract:OBJECTIVE:Mice with congenital loss of the glucagon receptor gene (Gcgr-/- mice) remain normoglycemic in insulinopenic conditions, suggesting that unopposed glucagon action is the driving force for hyperglycemia in Type-1 Diabetes Mellitus (T1DM). However, chronic loss of GCGR results in a neomorphic phenotype that inc...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2018.07.012

    authors: Rivero-Gutierrez B,Haller A,Holland J,Yates E,Khrisna R,Habegger K,Dimarchi R,D'Alessio D,Perez-Tilve D

    更新日期:2018-11-01 00:00:00

  • Nrg4 promotes fuel oxidation and a healthy adipokine profile to ameliorate diet-induced metabolic disorders.

    abstract:OBJECTIVE:Brown and white adipose tissue exerts pleiotropic effects on systemic energy metabolism in part by releasing endocrine factors. Neuregulin 4 (Nrg4) was recently identified as a brown fat-enriched secreted factor that ameliorates diet-induced metabolic disorders, including insulin resistance and hepatic steato...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2017.03.016

    authors: Chen Z,Wang GX,Ma SL,Jung DY,Ha H,Altamimi T,Zhao XY,Guo L,Zhang P,Hu CR,Cheng JX,Lopaschuk GD,Kim JK,Lin JD

    更新日期:2017-06-21 00:00:00

  • Surplus fat rapidly increases fat oxidation and insulin resistance in lipodystrophic mice.

    abstract:OBJECTIVE:Surplus dietary fat cannot be converted into other macronutrient forms or excreted, so has to be stored or oxidized. Healthy mammals store excess energy in the form of triacylgycerol (TAG) in lipid droplets within adipocytes rather than oxidizing it, and thus ultimately gain weight. The 'overflow hypothesis' ...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2018.05.006

    authors: Girousse A,Virtue S,Hart D,Vidal-Puig A,Murgatroyd PR,Mouisel E,Sengenès C,Savage DB

    更新日期:2018-07-01 00:00:00

  • Ceramides are necessary and sufficient for diet-induced impairment of thermogenic adipocytes.

    abstract:OBJECTIVE:Aging and weight gain lead to a decline in brown and beige adipocyte functionality that exacerbates obesity and insulin resistance. We sought to determine whether sphingolipids, such as ceramides, a class of lipid metabolites that accumulate in aging and overnutrition, are sufficient or necessary for the meta...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2020.101145

    authors: Chaurasia B,Ying L,Talbot CL,Maschek JA,Cox J,Schuchman EH,Hirabayashi Y,Holland WL,Summers SA

    更新日期:2020-12-19 00:00:00

  • AVP neurons in the paraventricular nucleus of the hypothalamus regulate feeding.

    abstract::Melanocortins and their receptors are critical components of energy homeostasis and the paraventricular nucleus of the hypothalamus (PVH) is an important site of melanocortin action. Although best known for its role in osmoregulation, arginine vasopressin (AVP) has been implicated in feeding and is robustly expressed ...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2013.12.006

    authors: Pei H,Sutton AK,Burnett KH,Fuller PM,Olson DP

    更新日期:2014-01-08 00:00:00

  • Metabolically phenotyped pancreatectomized patients as living donors for the study of islets in health and diabetes.

    abstract:BACKGROUND:The availability of human pancreatic islets with characteristics closely resembling those present in vivo is instrumental for ex vivo studies in diabetes research. SCOPE OF REVIEW:In this review we propose metabolically phenotyped surgical patients as a novel source of pancreatic tissue for islet research. ...

    journal_title:Molecular metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.molmet.2019.06.006

    authors: Barovic M,Distler M,Schöniger E,Radisch N,Aust D,Weitz J,Ibberson M,Schulte AM,Solimena M

    更新日期:2019-09-01 00:00:00

  • Microbially produced glucagon-like peptide 1 improves glucose tolerance in mice.

    abstract:OBJECTIVE:The enteroendocrine hormone glucagon-like peptide 1 (GLP-1) is an attractive anti-diabetic therapy. Here, we generated a recombinant Lactococcus lactis strain genetically modified to produce GLP-1 and investigated its ability to improve glucose tolerance in mice on chow or high-fat diet (HFD). METHODS:We tra...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2016.06.006

    authors: Arora T,Wegmann U,Bobhate A,Lee YS,Greiner TU,Drucker DJ,Narbad A,Bäckhed F

    更新日期:2016-06-22 00:00:00

  • Evidence for a novel functional role of astrocytes in the acute homeostatic response to high-fat diet intake in mice.

    abstract:OBJECTIVE:Introduction of a high-fat diet to mice results in a period of voracious feeding, known as hyperphagia, before homeostatic mechanisms prevail to restore energy intake to an isocaloric level. Acute high-fat diet hyperphagia induces astrocyte activation in the rodent hypothalamus, suggesting a potential role of...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2014.10.001

    authors: Buckman LB,Thompson MM,Lippert RN,Blackwell TS,Yull FE,Ellacott KL

    更新日期:2014-10-16 00:00:00

  • Physical exercise and liver "fitness": Role of mitochondrial function and epigenetics-related mechanisms in non-alcoholic fatty liver disease.

    abstract:BACKGROUND:Modern lifestyles, especially high-caloric intake and physical inactivity, contribute to the increased prevalence of non-alcoholic fatty liver disease (NAFLD), which becomes a significant health problem worldwide. Lifestyle changes, however, affect not only parental generation, but also their offspring, rein...

    journal_title:Molecular metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.molmet.2019.11.015

    authors: Stevanović J,Beleza J,Coxito P,Ascensão A,Magalhães J

    更新日期:2020-02-01 00:00:00

  • Epigenetic control of variation and stochasticity in metabolic disease.

    abstract:BACKGROUND:The alarming rise of obesity and its associated comorbidities represents a medical burden and a major global health and economic issue. Understanding etiological mechanisms underpinning susceptibility and therapeutic response is of primary importance. Obesity, diabetes, and metabolic diseases are complex tra...

    journal_title:Molecular metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.molmet.2018.05.010

    authors: Panzeri I,Pospisilik JA

    更新日期:2018-08-01 00:00:00

  • The Hepatokine TSK does not affect brown fat thermogenic capacity, body weight gain, and glucose homeostasis.

    abstract:OBJECTIVES:Hepatokines are proteins secreted by the liver that impact the functions of the liver and various tissues through autocrine, paracrine, and endocrine signaling. Recently, Tsukushi (TSK) was identified as a new hepatokine that is induced by obesity and cold exposure. It was proposed that TSK controls sympathe...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2019.09.014

    authors: Mouchiroud M,Camiré É,Aldow M,Caron A,Jubinville É,Turcotte L,Kaci I,Beaulieu MJ,Roy C,Labbé SM,Varin TV,Gélinas Y,Lamothe J,Trottier J,Mitchell PL,Guénard F,Festuccia WT,Joubert P,Rose CF,Karvellas CJ,Barbier O,

    更新日期:2019-12-01 00:00:00