Nrg4 promotes fuel oxidation and a healthy adipokine profile to ameliorate diet-induced metabolic disorders.

Abstract:

OBJECTIVE:Brown and white adipose tissue exerts pleiotropic effects on systemic energy metabolism in part by releasing endocrine factors. Neuregulin 4 (Nrg4) was recently identified as a brown fat-enriched secreted factor that ameliorates diet-induced metabolic disorders, including insulin resistance and hepatic steatosis. However, the physiological mechanisms through which Nrg4 regulates energy balance and glucose and lipid metabolism remain incompletely understood. The aims of the current study were: i) to investigate the regulation of adipose Nrg4 expression during obesity and the physiological signals involved, ii) to elucidate the mechanisms underlying Nrg4 regulation of energy balance and glucose and lipid metabolism, and iii) to explore whether Nrg4 regulates adipose tissue secretome gene expression and adipokine secretion. METHODS:We examined the correlation of adipose Nrg4 expression with obesity in a cohort of diet-induced obese mice and investigated the upstream signals that regulate Nrg4 expression. We performed metabolic cage and hyperinsulinemic-euglycemic clamp studies in Nrg4 transgenic mice to dissect the metabolic pathways regulated by Nrg4. We investigated how Nrg4 regulates hepatic lipid metabolism in the fasting state and explored the effects of Nrg4 on adipose tissue gene expression, particularly those encoding secreted factors. RESULTS:Adipose Nrg4 expression is inversely correlated with adiposity and regulated by pro-inflammatory and anti-inflammatory signaling. Transgenic expression of Nrg4 increases energy expenditure and augments whole body glucose metabolism. Nrg4 protects mice from diet-induced hepatic steatosis in part through activation of hepatic fatty acid oxidation and ketogenesis. Finally, Nrg4 promotes a healthy adipokine profile during obesity. CONCLUSIONS:Nrg4 exerts pleiotropic beneficial effects on energy balance and glucose and lipid metabolism to ameliorate obesity-associated metabolic disorders. Biologic therapeutics based on Nrg4 may improve both type 2 diabetes and non-alcoholic fatty liver disease (NAFLD) in patients.

journal_name

Mol Metab

journal_title

Molecular metabolism

authors

Chen Z,Wang GX,Ma SL,Jung DY,Ha H,Altamimi T,Zhao XY,Guo L,Zhang P,Hu CR,Cheng JX,Lopaschuk GD,Kim JK,Lin JD

doi

10.1016/j.molmet.2017.03.016

subject

Has Abstract

pub_date

2017-06-21 00:00:00

pages

863-872

issue

8

issn

2212-8778

pii

S2212-8778(17)30148-5

journal_volume

6

pub_type

杂志文章
  • Rfx6 promotes the differentiation of peptide-secreting enteroendocrine cells while repressing genetic programs controlling serotonin production.

    abstract:OBJECTIVE:Enteroendocrine cells (EECs) of the gastro-intestinal tract sense gut luminal factors and release peptide hormones or serotonin (5-HT) to coordinate energy uptake and storage. Our goal is to decipher the gene regulatory networks controlling EECs specification from enteroendocrine progenitors. In this context,...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2019.08.007

    authors: Piccand J,Vagne C,Blot F,Meunier A,Beucher A,Strasser P,Lund ML,Ghimire S,Nivlet L,Lapp C,Petersen N,Engelstoft MS,Thibault-Carpentier C,Keime C,Correa SJ,Schreiber V,Molina N,Schwartz TW,De Arcangelis A,Gradwohl G

    更新日期:2019-11-01 00:00:00

  • N-terminal transactivation function, AF-1, of estrogen receptor alpha controls obesity through enhancement of energy expenditure.

    abstract:OBJECTIVE:Studies using the estrogen receptor alpha (ERα) knock-out (αERKO) mice have demonstrated that ERα plays a crucial role in various estrogen-mediated metabolic regulations. ERα is a ligand dependent transcription regulator and its activity is regulated by estrogenic compounds. ERα consists of two transcriptiona...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2018.09.006

    authors: Arao Y,Hamilton KJ,Lierz SL,Korach KS

    更新日期:2018-12-01 00:00:00

  • Regulation of inflammation in diabetes: From genetics to epigenomics evidence.

    abstract:BACKGROUND:Diabetes is one of the greatest public health challenges worldwide, and we still lack complementary approaches to significantly enhance the efficacy of preventive and therapeutic approaches. Genetic and environmental factors are the culprits involved in diabetes risk. Evidence from the last decade has highli...

    journal_title:Molecular metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.molmet.2020.101041

    authors: Diedisheim M,Carcarino E,Vandiedonck C,Roussel R,Gautier JF,Venteclef N

    更新日期:2020-11-01 00:00:00

  • Metabolic dysfunction in polycystic ovary syndrome: Pathogenic role of androgen excess and potential therapeutic strategies.

    abstract:BACKGROUND:Polycystic ovary syndrome (PCOS) is the most common endocrinopathy among reproductive age women. Although its cardinal manifestations include hyperandrogenism, oligo/anovulation, and/or polycystic ovarian morphology, PCOS women often display also notable metabolic comorbidities. An array of pathogenic mechan...

    journal_title:Molecular metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.molmet.2020.01.001

    authors: Sanchez-Garrido MA,Tena-Sempere M

    更新日期:2020-05-01 00:00:00

  • Targeting hepatic pyruvate dehydrogenase kinases restores insulin signaling and mitigates ChREBP-mediated lipogenesis in diet-induced obese mice.

    abstract:OBJECTIVE:Mitochondrial pyruvate dehydrogenase kinases 1-4 (PDKs1-4) negatively regulate activity of the pyruvate dehydrogenase complex (PDC) by reversible phosphorylation. PDKs play a pivotal role in maintaining energy homeostasis and contribute to metabolic flexibility by attenuating PDC activity in various mammalian...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2018.03.014

    authors: Wu CY,Tso SC,Chuang JL,Gui WJ,Lou M,Sharma G,Khemtong C,Qi X,Wynn RM,Chuang DT

    更新日期:2018-06-01 00:00:00

  • Bidirectional manipulation of gene expression in adipocytes using CRISPRa and siRNA.

    abstract:OBJECTIVE:Functional investigation of novel gene/protein targets associated with adipocyte differentiation or function heavily relies on efficient and accessible tools to manipulate gene expression in adipocytes in vitro. Recent advances in gene-editing technologies such as CRISPR-Cas9 have not only eased gene editing ...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2017.07.001

    authors: Lundh M,Pluciñska K,Isidor MS,Petersen PSS,Emanuelli B

    更新日期:2017-10-01 00:00:00

  • Mapping the molecular signatures of diet-induced NASH and its regulation by the hepatokine Tsukushi.

    abstract:OBJECTIVE:Nonalcoholic steatohepatitis (NASH) is closely associated with metabolic syndrome and increases the risk for end-stage liver disease, such as cirrhosis and hepatocellular carcinoma. Despite this, the molecular events that influence NASH pathogenesis remain poorly understood. The objectives of the current stud...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2018.12.004

    authors: Xiong X,Wang Q,Wang S,Zhang J,Liu T,Guo L,Yu Y,Lin JD

    更新日期:2019-02-01 00:00:00

  • Skeletal muscle autophagy and mitophagy in endurance-trained runners before and after a high-fat meal.

    abstract:OBJECTIVE:We tested the hypothesis that skeletal muscle of endurance-trained male runners would exhibit elevated autophagy and mitophagy markers, which would be associated with greater metabolic flexibility following a high-fat meal (HFM). METHODS:Muscle biopsies were collected to determine differences in autophagy an...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2017.10.006

    authors: Tarpey MD,Davy KP,McMillan RP,Bowser SM,Halliday TM,Boutagy NE,Davy BM,Frisard MI,Hulver MW

    更新日期:2017-12-01 00:00:00

  • Genetic and epigenetic control of metabolic health.

    abstract::Obesity is characterized as an excess accumulation of body fat resulting from a positive energy balance. It is the major risk factor for type 2 diabetes (T2D). The evidence for familial aggregation of obesity and its associated metabolic diseases is substantial. To date, about 150 genetic loci identified in genome-wid...

    journal_title:Molecular metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.molmet.2013.09.002

    authors: Schwenk RW,Vogel H,Schürmann A

    更新日期:2013-09-25 00:00:00

  • Epigenetic control of variation and stochasticity in metabolic disease.

    abstract:BACKGROUND:The alarming rise of obesity and its associated comorbidities represents a medical burden and a major global health and economic issue. Understanding etiological mechanisms underpinning susceptibility and therapeutic response is of primary importance. Obesity, diabetes, and metabolic diseases are complex tra...

    journal_title:Molecular metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.molmet.2018.05.010

    authors: Panzeri I,Pospisilik JA

    更新日期:2018-08-01 00:00:00

  • Distinct adipocyte progenitor cells are associated with regional phenotypes of perivascular aortic fat in mice.

    abstract:OBJECTIVE:Perivascular adipose tissue depots around the aorta are regionally distinct and have specific functional properties. Thoracic aorta perivascular adipose tissue (tPVAT) expresses higher levels of thermogenic genes and lower levels of inflammatory genes than abdominal aorta perivascular adipose tissue (aPVAT). ...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2017.12.014

    authors: Tran KV,Fitzgibbons T,Min SY,DeSouza T,Corvera S

    更新日期:2018-03-01 00:00:00

  • Integration of body temperature into the analysis of energy expenditure in the mouse.

    abstract:OBJECTIVES:We quantified the effect of environmental temperature on mouse energy homeostasis and body temperature. METHODS:The effect of environmental temperature (4-33 °C) on body temperature, energy expenditure, physical activity, and food intake in various mice (chow diet, high-fat diet, Brs3 (-/y) , lipodystrophic...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2015.03.001

    authors: Abreu-Vieira G,Xiao C,Gavrilova O,Reitman ML

    更新日期:2015-03-10 00:00:00

  • Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer.

    abstract:BACKGROUND:The TP53 gene is one of the most commonly inactivated tumor suppressors in human cancers. p53 functions during cancer progression have been linked to a variety of transcriptional and non-transcriptional activities that lead to the tight control of cell proliferation, senescence, DNA repair, and cell death. H...

    journal_title:Molecular metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.molmet.2019.10.002

    authors: Lacroix M,Riscal R,Arena G,Linares LK,Le Cam L

    更新日期:2020-03-01 00:00:00

  • A comprehensive lipidomic screen of pancreatic β-cells using mass spectroscopy defines novel features of glucose-stimulated turnover of neutral lipids, sphingolipids and plasmalogens.

    abstract:OBJECTIVE:Glucose promotes lipid remodelling in pancreatic β-cells, and this is thought to contribute to the regulation of insulin secretion, but the metabolic pathways and potential signalling intermediates have not been fully elaborated. METHODS:Using mass spectrometry (MS) we quantified changes in approximately 300...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2016.04.003

    authors: Pearson GL,Mellett N,Chu KY,Boslem E,Meikle PJ,Biden TJ

    更新日期:2016-04-13 00:00:00

  • Epidermal Acyl-CoA-binding protein is indispensable for systemic energy homeostasis.

    abstract:OBJECTIVES:The skin is the largest sensory organ of the human body and plays a fundamental role in regulating body temperature. However, adaptive alterations in skin functions and morphology have only vaguely been associated with physiological responses to cold stress or sensation of ambient temperatures. We previously...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2020.101144

    authors: Neess D,Kruse V,Marcher AB,Wæde MR,Vistisen J,Møller PM,Petersen R,Brewer JR,Ma T,Colleluori G,Severi I,Cinti S,Gerhart-Hines Z,Mandrup S,Færgeman NJ

    更新日期:2020-12-18 00:00:00

  • Glycerol not lactate is the major net carbon source for gluconeogenesis in mice during both short and prolonged fasting.

    abstract:OBJECTIVE:Fasting results in major metabolic changes including a switch from glycogenolysis to gluconeogenesis to maintain glucose homeostasis. However, the relationship between the length of fasting and the relative contribution of gluconeogenic substrates remains unclear. We investigated the relative contribution of ...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2019.11.005

    authors: Wang Y,Kwon H,Su X,Wondisford FE

    更新日期:2020-01-01 00:00:00

  • 11β-Hydroxysteroid dehydrogenase-1 is involved in bile acid homeostasis by modulating fatty acid transport protein-5 in the liver of mice.

    abstract::11β-Hydroxysteroid dehydrogenase-1 (11β-HSD1) plays a key role in glucocorticoid receptor (GR) activation. Besides, it metabolizes some oxysterols and bile acids (BAs). The GR regulates BA homeostasis; however, the impact of impaired 11β-HSD1 activity remained unknown. We profiled plasma and liver BAs in liver-specifi...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2014.04.008

    authors: Penno CA,Morgan SA,Rose AJ,Herzig S,Lavery GG,Odermatt A

    更新日期:2014-05-02 00:00:00

  • Ablation of intact hypothalamic and/or hindbrain TrkB signaling leads to perturbations in energy balance.

    abstract:OBJECTIVE:Brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin receptor kinase B (TrkB), play a paramount role in the central regulation of energy balance. Despite the substantial body of genetic evidence implicating BDNF- or TrkB-deficiency in human obesity, the critical brain region(s) contributing ...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2015.08.002

    authors: Ozek C,Zimmer DJ,De Jonghe BC,Kalb RG,Bence KK

    更新日期:2015-08-18 00:00:00

  • Loss of dorsomedial hypothalamic GLP-1 signaling reduces BAT thermogenesis and increases adiposity.

    abstract:OBJECTIVE:Glucagon-like peptide-1 (GLP-1) neurons in the hindbrain densely innervate the dorsomedial hypothalamus (DMH), a nucleus strongly implicated in body weight regulation and the sympathetic control of brown adipose tissue (BAT) thermogenesis. Therefore, DMH GLP-1 receptors (GLP-1R) are well placed to regulate en...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2018.03.008

    authors: Lee SJ,Sanchez-Watts G,Krieger JP,Pignalosa A,Norell PN,Cortella A,Pettersen KG,Vrdoljak D,Hayes MR,Kanoski SE,Langhans W,Watts AG

    更新日期:2018-05-01 00:00:00

  • microRNA-205-5p is a modulator of insulin sensitivity that inhibits FOXO function.

    abstract:OBJECTIVES:Hepatic insulin resistance is a hallmark of type 2 diabetes and obesity. Insulin receptor signaling through AKT and FOXO has important metabolic effects that have traditionally been ascribed to regulation of gene expression. However, whether all the metabolic effects of FOXO arise from its regulation of prot...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2018.08.003

    authors: Langlet F,Tarbier M,Haeusler RA,Camastra S,Ferrannini E,Friedländer MR,Accili D

    更新日期:2018-11-01 00:00:00

  • Improved metabolic phenotype of hypothalamic PTP1B-deficiency is dependent upon the leptin receptor.

    abstract::Protein tyrosine phosphatase 1B (PTP1B) is a known regulator of central metabolic signaling, and mice with whole brain-, leptin receptor (LepRb) expressing cell-, or proopiomelanocortin neuron-specific PTP1B-deficiency are lean, leptin hypersensitive, and display improved glucose homeostasis. However, whether the meta...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2014.01.008

    authors: Tsou RC,Rak KS,Zimmer DJ,Bence KK

    更新日期:2014-01-19 00:00:00

  • Metabolically phenotyped pancreatectomized patients as living donors for the study of islets in health and diabetes.

    abstract:BACKGROUND:The availability of human pancreatic islets with characteristics closely resembling those present in vivo is instrumental for ex vivo studies in diabetes research. SCOPE OF REVIEW:In this review we propose metabolically phenotyped surgical patients as a novel source of pancreatic tissue for islet research. ...

    journal_title:Molecular metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.molmet.2019.06.006

    authors: Barovic M,Distler M,Schöniger E,Radisch N,Aust D,Weitz J,Ibberson M,Schulte AM,Solimena M

    更新日期:2019-09-01 00:00:00

  • Granulocyte colony-stimulating factor (G-CSF): A saturated fatty acid-induced myokine with insulin-desensitizing properties in humans.

    abstract:OBJECTIVE:Circulating long-chain free fatty acids (FFAs) are important metabolic signals that acutely enhance fatty acid oxidation, thermogenesis, energy expenditure, and insulin secretion. However, if chronically elevated, they provoke inflammation, insulin resistance, and β-cell failure. Moreover, FFAs act via multip...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2016.02.001

    authors: Ordelheide AM,Gommer N,Böhm A,Hermann C,Thielker I,Machicao F,Fritsche A,Stefan N,Häring HU,Staiger H

    更新日期:2016-02-13 00:00:00

  • An unbiased silencing screen in muscle cells identifies miR-320a, miR-150, miR-196b, and miR-34c as regulators of skeletal muscle mitochondrial metabolism.

    abstract:OBJECTIVE:Strategies improving skeletal muscle mitochondrial capacity are commonly paralleled by improvements in (metabolic) health. We and others previously identified microRNAs regulating mitochondrial oxidative capacity, but data in skeletal muscle are limited. Therefore, the present study aimed to identify novel mi...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2017.08.007

    authors: Dahlmans D,Houzelle A,Andreux P,Jörgensen JA,Wang X,de Windt LJ,Schrauwen P,Auwerx J,Hoeks J

    更新日期:2017-11-01 00:00:00

  • Critical role for adenosine receptor A2a in β-cell proliferation.

    abstract:OBJECTIVE:Pharmacological activation of adenosine signaling has been shown to increase β-cell proliferation and thereby β-cell regeneration in zebrafish and rodent models of diabetes. However, whether adenosine has an endogenous role in regulating β-cell proliferation is unknown. The objective of this study was to dete...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2016.09.006

    authors: Schulz N,Liu KC,Charbord J,Mattsson CL,Tao L,Tworus D,Andersson O

    更新日期:2016-09-20 00:00:00

  • Knockdown of ATP citrate lyase in pancreatic beta cells does not inhibit insulin secretion or glucose flux and implicates the acetoacetate pathway in insulin secretion.

    abstract:OBJECTIVE:Glucose-stimulated insulin secretion in pancreatic beta cells requires metabolic signals including the generation of glucose-derived short chain acyl-CoAs in the cytosol from mitochondrially-derived metabolites. One concept of insulin secretion is that ATP citrate lyase generates short chain acyl-CoAs in the ...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2016.07.011

    authors: El Azzouny M,Longacre MJ,Ansari IH,Kennedy RT,Burant CF,MacDonald MJ

    更新日期:2016-08-08 00:00:00

  • Single-cell transcriptomics of human islet ontogeny defines the molecular basis of β-cell dedifferentiation in T2D.

    abstract:OBJECTIVE:Dedifferentiation of pancreatic β-cells may reduce islet function in type 2 diabetes (T2D). However, the prevalence, plasticity and functional consequences of this cellular state remain unknown. METHODS:We employed single-cell RNAseq to detail the maturation program of α- and β-cells during human ontogeny. W...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2020.101057

    authors: Avrahami D,Wang YJ,Schug J,Feleke E,Gao L,Liu C,HPAP Consortium.,Naji A,Glaser B,Kaestner KH

    更新日期:2020-12-01 00:00:00

  • Nicotinamide N-methyltransferase: At the crossroads between cellular metabolism and epigenetic regulation.

    abstract:BACKGROUND:The abundance of energy metabolites is intimately interconnected with the activity of chromatin-modifying enzymes in order to guarantee the finely tuned modulation of gene expression in response to cellular energetic status. Metabolism-induced epigenetic gene regulation is a key molecular axis for the mainte...

    journal_title:Molecular metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.molmet.2021.101165

    authors: Roberti A,Fernández AF,Fraga MF

    更新日期:2021-01-14 00:00:00

  • The disassembly of the neuromuscular synapse in high-fat diet-induced obese male mice.

    abstract:OBJECTIVE:A sustained high fat diet in mice mimics many features of human obesity. We used male and female Non-Swiss albino mice to investigate the impact of short and long-term high-fat diet-(HFD)-induced obesity on the peripheral neuromuscular junction (NMJ) and whether obesity-related synaptic structural alterations...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2020.100979

    authors: Martinez-Pena Y Valenzuela I,Akaaboune M

    更新日期:2020-06-01 00:00:00

  • A novel crosstalk between Alk7 and cGMP signaling differentially regulates brown adipocyte function.

    abstract:OBJECTIVE:Obesity is an enormous burden for patients and health systems world-wide. Brown adipose tissue dissipates energy in response to cold and has been shown to be metabolically active in human adults. The type I transforming growth factor β (TGFβ) receptor Activin receptor-like kinase 7 (Alk7) is highly expressed ...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2015.06.003

    authors: Balkow A,Jagow J,Haas B,Siegel F,Kilić A,Pfeifer A

    更新日期:2015-06-14 00:00:00