The AMPK activator R419 improves exercise capacity and skeletal muscle insulin sensitivity in obese mice.

Abstract:

OBJECTIVE:Skeletal muscle AMP-activated protein kinase (AMPK) is important for regulating glucose homeostasis, mitochondrial content and exercise capacity. R419 is a mitochondrial complex-I inhibitor that has recently been shown to acutely activate AMPK in myotubes. Our main objective was to examine whether R419 treatment improves insulin sensitivity and exercise capacity in obese insulin resistant mice and whether skeletal muscle AMPK was important for mediating potential effects. METHODS:Glucose homeostasis, insulin sensitivity, exercise capacity, and electron transport chain content/activity were examined in wildtype (WT) and AMPK β1β2 muscle-specific null (AMPK-MKO) mice fed a high-fat diet (HFD) with or without R419 supplementation. RESULTS:There was no change in weight gain, adiposity, glucose tolerance or insulin sensitivity between HFD-fed WT and AMPK-MKO mice. In both HFD-fed WT and AMPK-MKO mice, R419 enhanced insulin tolerance, insulin-stimulated glucose disposal, skeletal muscle 2-deoxyglucose uptake, Akt phosphorylation and glucose transporter 4 (GLUT4) content independently of alterations in body mass. In WT, but not AMPK-MKO mice, R419 improved treadmill running capacity. Treatment with R419 increased muscle electron transport chain content and activity in WT mice; effects which were blunted in AMPK-MKO mice. CONCLUSIONS:Treatment of obese mice with R419 improved skeletal muscle insulin sensitivity through a mechanism that is independent of skeletal muscle AMPK. R419 also increases exercise capacity and improves mitochondrial function in obese WT mice; effects that are diminished in the absence of skeletal muscle AMPK. These findings suggest that R419 may be a promising therapy for improving whole-body glucose homeostasis and exercise capacity.

journal_name

Mol Metab

journal_title

Molecular metabolism

authors

Marcinko K,Bujak AL,Lally JS,Ford RJ,Wong TH,Smith BK,Kemp BE,Jenkins Y,Li W,Kinsella TM,Hitoshi Y,Steinberg GR

doi

10.1016/j.molmet.2015.06.002

subject

Has Abstract

pub_date

2015-06-15 00:00:00

pages

643-51

issue

9

issn

2212-8778

pii

S2212-8778(15)00096-4

journal_volume

4

pub_type

杂志文章
  • The role of GluN2A and GluN2B NMDA receptor subunits in AgRP and POMC neurons on body weight and glucose homeostasis.

    abstract:OBJECTIVE:Hypothalamic agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) expressing neurons play critical roles in control of energy balance. Glutamatergic input via n-methyl-d-aspartate receptors (NMDARs) is pivotal for regulation of neuronal activity and is required in AgRP neurons for normal body weight ...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2015.06.010

    authors: Üner A,Gonçalves GH,Li W,Porceban M,Caron N,Schönke M,Delpire E,Sakimura K,Bjørbæk C

    更新日期:2015-07-06 00:00:00

  • Metabolic dysfunction in polycystic ovary syndrome: Pathogenic role of androgen excess and potential therapeutic strategies.

    abstract:BACKGROUND:Polycystic ovary syndrome (PCOS) is the most common endocrinopathy among reproductive age women. Although its cardinal manifestations include hyperandrogenism, oligo/anovulation, and/or polycystic ovarian morphology, PCOS women often display also notable metabolic comorbidities. An array of pathogenic mechan...

    journal_title:Molecular metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.molmet.2020.01.001

    authors: Sanchez-Garrido MA,Tena-Sempere M

    更新日期:2020-05-01 00:00:00

  • Nrg4 promotes fuel oxidation and a healthy adipokine profile to ameliorate diet-induced metabolic disorders.

    abstract:OBJECTIVE:Brown and white adipose tissue exerts pleiotropic effects on systemic energy metabolism in part by releasing endocrine factors. Neuregulin 4 (Nrg4) was recently identified as a brown fat-enriched secreted factor that ameliorates diet-induced metabolic disorders, including insulin resistance and hepatic steato...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2017.03.016

    authors: Chen Z,Wang GX,Ma SL,Jung DY,Ha H,Altamimi T,Zhao XY,Guo L,Zhang P,Hu CR,Cheng JX,Lopaschuk GD,Kim JK,Lin JD

    更新日期:2017-06-21 00:00:00

  • Nuclear hormone and peptide hormone therapeutics for NAFLD and NASH.

    abstract:BACKGROUND:Non-alcoholic steatohepatitis (NASH) is a spectrum of histological liver pathologies ranging from hepatocyte fat accumulation, hepatocellular ballooning, lobular inflammation, and pericellular fibrosis. Based on early investigations, it was discovered that visceral fat accumulation, hepatic insulin resistanc...

    journal_title:Molecular metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.molmet.2020.101153

    authors: Finan B,Parlee SD,Yang B

    更新日期:2020-12-23 00:00:00

  • Mapping the molecular signatures of diet-induced NASH and its regulation by the hepatokine Tsukushi.

    abstract:OBJECTIVE:Nonalcoholic steatohepatitis (NASH) is closely associated with metabolic syndrome and increases the risk for end-stage liver disease, such as cirrhosis and hepatocellular carcinoma. Despite this, the molecular events that influence NASH pathogenesis remain poorly understood. The objectives of the current stud...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2018.12.004

    authors: Xiong X,Wang Q,Wang S,Zhang J,Liu T,Guo L,Yu Y,Lin JD

    更新日期:2019-02-01 00:00:00

  • Adipocyte Gs but not Gi signaling regulates whole-body glucose homeostasis.

    abstract:OBJECTIVE:The sympathetic nervous system (SNS) is a key regulator of the metabolic and endocrine functions of adipose tissue. Increased SNS outflow promotes fat mobilization, stimulates non-shivering thermogenesis, promotes browning, and inhibits leptin production. Most of these effects are attributed to norepinephrine...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2019.06.019

    authors: Caron A,Reynolds RP,Castorena CM,Michael NJ,Lee CE,Lee S,Berdeaux R,Scherer PE,Elmquist JK

    更新日期:2019-09-01 00:00:00

  • Epigenetic control of variation and stochasticity in metabolic disease.

    abstract:BACKGROUND:The alarming rise of obesity and its associated comorbidities represents a medical burden and a major global health and economic issue. Understanding etiological mechanisms underpinning susceptibility and therapeutic response is of primary importance. Obesity, diabetes, and metabolic diseases are complex tra...

    journal_title:Molecular metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.molmet.2018.05.010

    authors: Panzeri I,Pospisilik JA

    更新日期:2018-08-01 00:00:00

  • Brown adipocytes can display a mammary basal myoepithelial cell phenotype in vivo.

    abstract:OBJECTIVE:Previous work has suggested that white adipocytes may also show a mammary luminal secretory cell phenotype during lactation. The capacity of brown and beige/brite adipocytes to display a mammary cell phenotype and the levels at which they demonstrate such phenotypes in vivo is currently unknown. METHODS:To i...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2017.07.015

    authors: Li L,Li B,Li M,Niu C,Wang G,Li T,Król E,Jin W,Speakman JR

    更新日期:2017-10-01 00:00:00

  • PPARγ is dispensable for clear cell renal cell carcinoma progression.

    abstract:OBJECTIVE:Clear cell renal cell carcinoma (ccRCC) is a subtype of kidney cancer defined by robust lipid accumulation, which prior studies have indicated plays an important role in tumor progression. We hypothesized that the peroxisome proliferator-activated receptor gamma (PPARγ), detected in both ccRCC tumors and cell...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2018.05.013

    authors: Sanchez DJ,Steger DJ,Skuli N,Bansal A,Simon MC

    更新日期:2018-08-01 00:00:00

  • Cadm2 regulates body weight and energy homeostasis in mice.

    abstract:OBJECTIVE:Obesity is strongly linked to genes regulating neuronal signaling and function, implicating the central nervous system in the maintenance of body weight and energy metabolism. Genome-wide association studies identified significant associations between body mass index (BMI) and multiple loci near Cell adhesion...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2017.11.010

    authors: Yan X,Wang Z,Schmidt V,Gauert A,Willnow TE,Heinig M,Poy MN

    更新日期:2018-02-01 00:00:00

  • Glycerol not lactate is the major net carbon source for gluconeogenesis in mice during both short and prolonged fasting.

    abstract:OBJECTIVE:Fasting results in major metabolic changes including a switch from glycogenolysis to gluconeogenesis to maintain glucose homeostasis. However, the relationship between the length of fasting and the relative contribution of gluconeogenic substrates remains unclear. We investigated the relative contribution of ...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2019.11.005

    authors: Wang Y,Kwon H,Su X,Wondisford FE

    更新日期:2020-01-01 00:00:00

  • Mitochondrial dysfunction has divergent, cell type-dependent effects on insulin action.

    abstract::The contribution of mitochondrial dysfunction to insulin resistance is a contentious issue in metabolic research. Recent evidence implicates mitochondrial dysfunction as contributing to multiple forms of insulin resistance. However, some models of mitochondrial dysfunction fail to induce insulin resistance, suggesting...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2014.02.001

    authors: Martin SD,Morrison S,Konstantopoulos N,McGee SL

    更新日期:2014-03-12 00:00:00

  • Peroxisome proliferator-activated receptor gamma (PPARG) modulates free fatty acid receptor 1 (FFAR1) dependent insulin secretion in humans.

    abstract::Genetic variation in FFAR1 modulates insulin secretion dependent on non-esterified fatty acid (NEFA) concentrations. We previously demonstrated lower insulin secretion in minor allele carriers of PPARG Pro12Ala in high-NEFA environment, but the mode of action could not been revealed. We tested if this effect is mediat...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2014.07.001

    authors: Wagner R,Hieronimus A,Lamprinou A,Heni M,Hatziagelaki E,Ullrich S,Stefan N,Staiger H,Häring HU,Fritsche A

    更新日期:2014-07-07 00:00:00

  • Neonatal GLP1R activation limits adult adiposity by durably altering hypothalamic architecture.

    abstract:OBJECTIVE:Adult obesity risk is influenced by alterations to fetal and neonatal environments. Modifying neonatal gut or neurohormone signaling pathways can have negative metabolic consequences in adulthood. Here we characterize the effect of neonatal activation of glucagon like peptide-1 (GLP-1) receptor (GLP1R) signal...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2017.05.006

    authors: Rozo AV,Babu DA,Suen PA,Groff DN,Seeley RJ,Simmons RA,Seale P,Ahima RS,Stoffers DA

    更新日期:2017-05-15 00:00:00

  • Combined loss of GLP-1R and Y2R does not alter progression of high-fat diet-induced obesity or response to RYGB surgery in mice.

    abstract:OBJECTIVE:Understanding the mechanisms underlying the remarkable beneficial effects of gastric bypass surgery is important for the development of non-surgical therapies or less invasive surgeries in the fight against obesity and metabolic disease. Although the intestinal L-cell hormones glucagon-like peptide-1 (GLP-1) ...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2019.05.004

    authors: Boland BB,Mumphrey MB,Hao Z,Townsend RL,Gill B,Oldham S,Will S,Morrison CD,Yu S,Münzberg H,Rhodes CJ,Trevaskis JL,Berthoud HR

    更新日期:2019-07-01 00:00:00

  • Genetic and epigenetic control of metabolic health.

    abstract::Obesity is characterized as an excess accumulation of body fat resulting from a positive energy balance. It is the major risk factor for type 2 diabetes (T2D). The evidence for familial aggregation of obesity and its associated metabolic diseases is substantial. To date, about 150 genetic loci identified in genome-wid...

    journal_title:Molecular metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.molmet.2013.09.002

    authors: Schwenk RW,Vogel H,Schürmann A

    更新日期:2013-09-25 00:00:00

  • Beige fat is dispensable for the metabolic benefits associated with myostatin deletion.

    abstract:OBJECTIVE:Increasing muscle mass and activating beige fat both have great potential for ameliorating obesity and its comorbidities. Myostatin null mice have increased skeletal muscle mass and are protected from obesity and its sequelae. Deletion of myostatin has also been suggested to result in the activation of beige ...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2020.101120

    authors: Marchildon F,Chi J,O'Connor S,Bediako H,Cohen P

    更新日期:2021-01-01 00:00:00

  • Functional analysis reveals differential effects of glutamate and MCH neuropeptide in MCH neurons.

    abstract:OBJECTIVES:Melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus (LH) regulate food intake and body weight, glucose metabolism and convey the reward value of sucrose. In this report, we set out to establish the respective roles of MCH and conventional neurotransmitters in these neurons. METHODS:MCH n...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2018.05.001

    authors: Schneeberger M,Tan K,Nectow AR,Parolari L,Caglar C,Azevedo E,Li Z,Domingos A,Friedman JM

    更新日期:2018-07-01 00:00:00

  • Lipin-1 and lipin-3 together determine adiposity in vivo.

    abstract::The lipin protein family of phosphatidate phosphatases has an established role in triacylglycerol synthesis and storage. Physiological roles for lipin-1 and lipin-2 have been identified, but the role of lipin-3 has remained mysterious. Using lipin single- and double-knockout models we identified a cooperative relation...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2013.11.008

    authors: Csaki LS,Dwyer JR,Li X,Nguyen MH,Dewald J,Brindley DN,Lusis AJ,Yoshinaga Y,de Jong P,Fong L,Young SG,Reue K

    更新日期:2013-11-28 00:00:00

  • The taming of PARP1 and its impact on NAD+ metabolism.

    abstract:BACKGROUND:Poly-ADP-ribose polymerases (PARPs) are key mediators of cellular stress response. They are intimately linked to cellular metabolism through the consumption of NAD+. PARP1/ARTD1 in the nucleus is the major NAD+ consuming activity and plays a key role in maintaining genomic integrity. SCOPE OF REVIEW:In this...

    journal_title:Molecular metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.molmet.2020.01.014

    authors: Hurtado-Bagès S,Knobloch G,Ladurner AG,Buschbeck M

    更新日期:2020-08-01 00:00:00

  • Mitochondrial Dynamin-Related Protein 1 (DRP1) translocation in response to cerebral glucose is impaired in a rat model of early alteration in hypothalamic glucose sensing.

    abstract:OBJECTIVE:Hypothalamic glucose sensing (HGS) initiates insulin secretion (IS) via a vagal control, participating in energy homeostasis. This requires mitochondrial reactive oxygen species (mROS) signaling, dependent on mitochondrial fission, as shown by invalidation of the hypothalamic DRP1 protein. Here, our objective...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2018.11.007

    authors: Desmoulins L,Chrétien C,Paccoud R,Collins S,Cruciani-Guglielmacci C,Galinier A,Liénard F,Quinault A,Grall S,Allard C,Fenech C,Carneiro L,Mouillot T,Fournel A,Knauf C,Magnan C,Fioramonti X,Pénicaud L,Leloup C

    更新日期:2019-02-01 00:00:00

  • Estrogen receptor-α in female skeletal muscle is not required for regulation of muscle insulin sensitivity and mitochondrial regulation.

    abstract:OBJECTIVE:Estrogen receptor-α (ERα) is a nuclear receptor family member thought to substantially contribute to the metabolic regulation of skeletal muscle. However, previous mouse models utilized to assess the necessity of ERα signaling in skeletal muscle were confounded by altered developmental programming and/or infl...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2019.12.010

    authors: Iñigo MR,Amorese AJ,Tarpey MD,Balestrieri NP,Jones KG,Patteson DJ,Jackson KC,Torres MJ,Lin CT,Smith CD,Heden TD,McMillin SL,Weyrauch LA,Stanley EC,Schmidt CA,Kilburg-Basnyat BB,Reece SW,Psaltis CE,Leinwand LA,Funai

    更新日期:2020-04-01 00:00:00

  • Physiological roles of the GIP receptor in murine brown adipose tissue.

    abstract:OBJECTIVE:Glucose-dependent insulinotropic polypeptide (GIP) is secreted from the gut in response to nutrient ingestion and promotes meal-dependent insulin secretion and lipid metabolism. Loss or attenuation of GIP receptor (GIPR) action leads to resistance to diet-induced obesity through incompletely understood mechan...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2019.08.006

    authors: Beaudry JL,Kaur KD,Varin EM,Baggio LL,Cao X,Mulvihill EE,Bates HE,Campbell JE,Drucker DJ

    更新日期:2019-10-01 00:00:00

  • Integration of body temperature into the analysis of energy expenditure in the mouse.

    abstract:OBJECTIVES:We quantified the effect of environmental temperature on mouse energy homeostasis and body temperature. METHODS:The effect of environmental temperature (4-33 °C) on body temperature, energy expenditure, physical activity, and food intake in various mice (chow diet, high-fat diet, Brs3 (-/y) , lipodystrophic...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2015.03.001

    authors: Abreu-Vieira G,Xiao C,Gavrilova O,Reitman ML

    更新日期:2015-03-10 00:00:00

  • 11β-Hydroxysteroid dehydrogenase-1 is involved in bile acid homeostasis by modulating fatty acid transport protein-5 in the liver of mice.

    abstract::11β-Hydroxysteroid dehydrogenase-1 (11β-HSD1) plays a key role in glucocorticoid receptor (GR) activation. Besides, it metabolizes some oxysterols and bile acids (BAs). The GR regulates BA homeostasis; however, the impact of impaired 11β-HSD1 activity remained unknown. We profiled plasma and liver BAs in liver-specifi...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2014.04.008

    authors: Penno CA,Morgan SA,Rose AJ,Herzig S,Lavery GG,Odermatt A

    更新日期:2014-05-02 00:00:00

  • microRNA-205-5p is a modulator of insulin sensitivity that inhibits FOXO function.

    abstract:OBJECTIVES:Hepatic insulin resistance is a hallmark of type 2 diabetes and obesity. Insulin receptor signaling through AKT and FOXO has important metabolic effects that have traditionally been ascribed to regulation of gene expression. However, whether all the metabolic effects of FOXO arise from its regulation of prot...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2018.08.003

    authors: Langlet F,Tarbier M,Haeusler RA,Camastra S,Ferrannini E,Friedländer MR,Accili D

    更新日期:2018-11-01 00:00:00

  • Estrogen receptor subcellular localization and cardiometabolism.

    abstract:BACKGROUND:In addition to their crucial role in reproduction, estrogens are key regulators of energy and glucose homeostasis and they also exert several cardiovascular protective effects. These beneficial actions are mainly mediated by estrogen receptor alpha (ERα), which is widely expressed in metabolic and vascular t...

    journal_title:Molecular metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.molmet.2018.05.009

    authors: Gourdy P,Guillaume M,Fontaine C,Adlanmerini M,Montagner A,Laurell H,Lenfant F,Arnal JF

    更新日期:2018-09-01 00:00:00

  • N-terminal transactivation function, AF-1, of estrogen receptor alpha controls obesity through enhancement of energy expenditure.

    abstract:OBJECTIVE:Studies using the estrogen receptor alpha (ERα) knock-out (αERKO) mice have demonstrated that ERα plays a crucial role in various estrogen-mediated metabolic regulations. ERα is a ligand dependent transcription regulator and its activity is regulated by estrogenic compounds. ERα consists of two transcriptiona...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2018.09.006

    authors: Arao Y,Hamilton KJ,Lierz SL,Korach KS

    更新日期:2018-12-01 00:00:00

  • Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer.

    abstract:BACKGROUND:The TP53 gene is one of the most commonly inactivated tumor suppressors in human cancers. p53 functions during cancer progression have been linked to a variety of transcriptional and non-transcriptional activities that lead to the tight control of cell proliferation, senescence, DNA repair, and cell death. H...

    journal_title:Molecular metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.molmet.2019.10.002

    authors: Lacroix M,Riscal R,Arena G,Linares LK,Le Cam L

    更新日期:2020-03-01 00:00:00

  • Microbially produced glucagon-like peptide 1 improves glucose tolerance in mice.

    abstract:OBJECTIVE:The enteroendocrine hormone glucagon-like peptide 1 (GLP-1) is an attractive anti-diabetic therapy. Here, we generated a recombinant Lactococcus lactis strain genetically modified to produce GLP-1 and investigated its ability to improve glucose tolerance in mice on chow or high-fat diet (HFD). METHODS:We tra...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2016.06.006

    authors: Arora T,Wegmann U,Bobhate A,Lee YS,Greiner TU,Drucker DJ,Narbad A,Bäckhed F

    更新日期:2016-06-22 00:00:00