Functional analysis reveals differential effects of glutamate and MCH neuropeptide in MCH neurons.

Abstract:

OBJECTIVES:Melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus (LH) regulate food intake and body weight, glucose metabolism and convey the reward value of sucrose. In this report, we set out to establish the respective roles of MCH and conventional neurotransmitters in these neurons. METHODS:MCH neurons were profiled using Cre-dependent molecular profiling technologies (vTRAP). MCHCre mice crossed to Vglut2fl/flmice or to DTRfl/flwere used to identify the role of glutamate in MCH neurons. We assessed metabolic parameters such as body composition, glucose tolerance, or sucrose preference. RESULTS:We found that nearly all MCH neurons in the LH are glutamatergic and that a loss of glutamatergic signaling from MCH neurons from a glutamate transporter (VGlut2) knockout leads to a reduced weight, hypophagia and hyperkinetic behavior with improved glucose tolerance and a loss of sucrose preference. These effects are indistinguishable from those seen after ablation of MCH neurons. These findings are in contrast to those seen in mice with a knockout of the MCH neuropeptide, which show normal glucose preference and do not have improved glucose tolerance. CONCLUSIONS:Overall, these data show that the vast majority of MCH neurons are glutamatergic, and that glutamate and MCH signaling mediate partially overlapping functions by these neurons, presumably by activating partially overlapping postsynaptic populations. The diverse functional effects of MCH neurons are thus mediated by a composite of glutamate and MCH signaling.

journal_name

Mol Metab

journal_title

Molecular metabolism

authors

Schneeberger M,Tan K,Nectow AR,Parolari L,Caglar C,Azevedo E,Li Z,Domingos A,Friedman JM

doi

10.1016/j.molmet.2018.05.001

subject

Has Abstract

pub_date

2018-07-01 00:00:00

pages

83-89

issn

2212-8778

pii

S2212-8778(18)30364-8

journal_volume

13

pub_type

杂志文章
  • TOSO promotes β-cell proliferation and protects from apoptosis.

    abstract::Decreased β-cell mass reflects a shift from quiescence/proliferation into apoptosis, it plays a crucial role in the pathophysiology of diabetes. A major attempt to restore β-cell mass and normoglycemia is to improve β-cell survival. Here we show that switching off the Fas pathway using Fas apoptotic inhibitory protein...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2012.08.006

    authors: Dharmadhikari G,Mühle M,Schulthess FT,Laue S,Oberholzer J,Pattou F,Kerr-Conte J,Maedler K

    更新日期:2012-08-17 00:00:00

  • Interdependence of nutrient metabolism and the circadian clock system: Importance for metabolic health.

    abstract:BACKGROUND:While additional research is needed, a number of large epidemiological studies show an association between circadian disruption and metabolic disorders. Specifically, obesity, insulin resistance, cardiovascular disease, and other signs of metabolic syndrome all have been linked to circadian disruption in hum...

    journal_title:Molecular metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.molmet.2015.12.006

    authors: Ribas-Latre A,Eckel-Mahan K

    更新日期:2016-01-14 00:00:00

  • Chronic hyperglycemia downregulates GLP-1 receptor signaling in pancreatic β-cells via protein kinase A.

    abstract:OBJECTIVE:Glucagon-like peptide 1 (GLP-1) enhances insulin secretion and protects β-cell mass. Diabetes therapies targeting the GLP-1 receptor (GLP-1R), expressed in numerous tissues, have diminished dose-response in patients with type 2 diabetes compared with healthy human controls. The aim of this study was to determ...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2015.01.010

    authors: Rajan S,Dickson LM,Mathew E,Orr CM,Ellenbroek JH,Philipson LH,Wicksteed B

    更新日期:2015-02-03 00:00:00

  • The taming of PARP1 and its impact on NAD+ metabolism.

    abstract:BACKGROUND:Poly-ADP-ribose polymerases (PARPs) are key mediators of cellular stress response. They are intimately linked to cellular metabolism through the consumption of NAD+. PARP1/ARTD1 in the nucleus is the major NAD+ consuming activity and plays a key role in maintaining genomic integrity. SCOPE OF REVIEW:In this...

    journal_title:Molecular metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.molmet.2020.01.014

    authors: Hurtado-Bagès S,Knobloch G,Ladurner AG,Buschbeck M

    更新日期:2020-08-01 00:00:00

  • A spontaneous leptin receptor point mutation causes obesity and differentially affects leptin signaling in hypothalamic nuclei resulting in metabolic dysfunctions distinct from db/db mice.

    abstract:OBJECTIVE:Leptin (Lep) plays a crucial role in controlling food intake and energy expenditure. Defective Lep/LepRb-signaling leads to fat accumulation, massive obesity, and the development of diabetes. We serendipitously noticed spontaneous development of obesity similar to LepR-deficient (db/db) mice in offspring from...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2019.04.010

    authors: Piattini F,Le Foll C,Kisielow J,Rosenwald E,Nielsen P,Lutz T,Schneider C,Kopf M

    更新日期:2019-07-01 00:00:00

  • Nuclear hormone and peptide hormone therapeutics for NAFLD and NASH.

    abstract:BACKGROUND:Non-alcoholic steatohepatitis (NASH) is a spectrum of histological liver pathologies ranging from hepatocyte fat accumulation, hepatocellular ballooning, lobular inflammation, and pericellular fibrosis. Based on early investigations, it was discovered that visceral fat accumulation, hepatic insulin resistanc...

    journal_title:Molecular metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.molmet.2020.101153

    authors: Finan B,Parlee SD,Yang B

    更新日期:2020-12-23 00:00:00

  • Cadm2 regulates body weight and energy homeostasis in mice.

    abstract:OBJECTIVE:Obesity is strongly linked to genes regulating neuronal signaling and function, implicating the central nervous system in the maintenance of body weight and energy metabolism. Genome-wide association studies identified significant associations between body mass index (BMI) and multiple loci near Cell adhesion...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2017.11.010

    authors: Yan X,Wang Z,Schmidt V,Gauert A,Willnow TE,Heinig M,Poy MN

    更新日期:2018-02-01 00:00:00

  • Rfx6 promotes the differentiation of peptide-secreting enteroendocrine cells while repressing genetic programs controlling serotonin production.

    abstract:OBJECTIVE:Enteroendocrine cells (EECs) of the gastro-intestinal tract sense gut luminal factors and release peptide hormones or serotonin (5-HT) to coordinate energy uptake and storage. Our goal is to decipher the gene regulatory networks controlling EECs specification from enteroendocrine progenitors. In this context,...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2019.08.007

    authors: Piccand J,Vagne C,Blot F,Meunier A,Beucher A,Strasser P,Lund ML,Ghimire S,Nivlet L,Lapp C,Petersen N,Engelstoft MS,Thibault-Carpentier C,Keime C,Correa SJ,Schreiber V,Molina N,Schwartz TW,De Arcangelis A,Gradwohl G

    更新日期:2019-11-01 00:00:00

  • High-fidelity Glucagon-CreER mouse line generated by CRISPR-Cas9 assisted gene targeting.

    abstract:OBJECTIVE:α-cells are the second most prominent cell type in pancreatic islets and are responsible for producing glucagon to increase plasma glucose levels in times of fasting. α-cell dysfunction and inappropriate glucagon secretion occur in both type 1 and type 2 diabetes. Thus, there is growing interest in studying b...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2017.01.003

    authors: Ackermann AM,Zhang J,Heller A,Briker A,Kaestner KH

    更新日期:2017-01-12 00:00:00

  • Peroxisome proliferator-activated receptor gamma (PPARG) modulates free fatty acid receptor 1 (FFAR1) dependent insulin secretion in humans.

    abstract::Genetic variation in FFAR1 modulates insulin secretion dependent on non-esterified fatty acid (NEFA) concentrations. We previously demonstrated lower insulin secretion in minor allele carriers of PPARG Pro12Ala in high-NEFA environment, but the mode of action could not been revealed. We tested if this effect is mediat...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2014.07.001

    authors: Wagner R,Hieronimus A,Lamprinou A,Heni M,Hatziagelaki E,Ullrich S,Stefan N,Staiger H,Häring HU,Fritsche A

    更新日期:2014-07-07 00:00:00

  • 14-3-3ζ mediates an alternative, non-thermogenic mechanism in male mice to reduce heat loss and improve cold tolerance.

    abstract:OBJECTIVE:Adaptive thermogenesis, which is partly mediated by sympathetic input on brown adipose tissue (BAT), is a mechanism of heat production that confers protection against prolonged cold exposure. Various endogenous stimuli, for example, norepinephrine and FGF-21, can also promote the conversion of inguinal white ...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2020.101052

    authors: Diallo K,Dussault S,Noll C,Lopez AF,Rivard A,Carpentier AC,Lim GE

    更新日期:2020-11-01 00:00:00

  • Action and therapeutic potential of oxyntomodulin.

    abstract::Oxyntomodulin (OXM) is a peptide hormone released from the gut in post-prandial state that activates both the glucagon-like peptide-1 receptor (GLP1R) and the glucagon receptor (GCGR) resulting in superior body weight lowering to selective GLP1R agonists. OXM reduces food intake and increases energy expenditure in hum...

    journal_title:Molecular metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.molmet.2013.12.001

    authors: Pocai A

    更新日期:2013-12-14 00:00:00

  • Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer.

    abstract:BACKGROUND:The TP53 gene is one of the most commonly inactivated tumor suppressors in human cancers. p53 functions during cancer progression have been linked to a variety of transcriptional and non-transcriptional activities that lead to the tight control of cell proliferation, senescence, DNA repair, and cell death. H...

    journal_title:Molecular metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.molmet.2019.10.002

    authors: Lacroix M,Riscal R,Arena G,Linares LK,Le Cam L

    更新日期:2020-03-01 00:00:00

  • Mitochondrial dysfunction has divergent, cell type-dependent effects on insulin action.

    abstract::The contribution of mitochondrial dysfunction to insulin resistance is a contentious issue in metabolic research. Recent evidence implicates mitochondrial dysfunction as contributing to multiple forms of insulin resistance. However, some models of mitochondrial dysfunction fail to induce insulin resistance, suggesting...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2014.02.001

    authors: Martin SD,Morrison S,Konstantopoulos N,McGee SL

    更新日期:2014-03-12 00:00:00

  • 11β-Hydroxysteroid dehydrogenase-1 is involved in bile acid homeostasis by modulating fatty acid transport protein-5 in the liver of mice.

    abstract::11β-Hydroxysteroid dehydrogenase-1 (11β-HSD1) plays a key role in glucocorticoid receptor (GR) activation. Besides, it metabolizes some oxysterols and bile acids (BAs). The GR regulates BA homeostasis; however, the impact of impaired 11β-HSD1 activity remained unknown. We profiled plasma and liver BAs in liver-specifi...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2014.04.008

    authors: Penno CA,Morgan SA,Rose AJ,Herzig S,Lavery GG,Odermatt A

    更新日期:2014-05-02 00:00:00

  • Autonomous interconversion between adult pancreatic α-cells and β-cells after differential metabolic challenges.

    abstract:BACKGROUND:Evidence hints at the ability of β-cells to emerge from non-β-cells upon genetic or pharmacological interventions. However, their quantitative contributions to the process of autonomous β-cell regeneration without genetic or pharmacological manipulations remain to be determined. METHODS & RESULTS:Using PANI...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2016.05.001

    authors: Ye R,Wang M,Wang QA,Spurgin SB,Wang ZV,Sun K,Scherer PE

    更新日期:2016-05-10 00:00:00

  • Regulation of muscle and metabolic physiology by hypothalamic erythropoietin independently of its peripheral action.

    abstract:OBJECTIVE:The glycoprotein hormone erythropoietin (EPO) is required for erythropoiesis, and the kidney is the primary site of adult EPO synthesis. Limited evidence has suggested that EPO could be detectable in the brain under certain conditions, but it remains unknown if the brain might have its own EPO system for biol...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2019.12.001

    authors: Wang Z,Khor S,Cai D

    更新日期:2020-02-01 00:00:00

  • Estrogen receptor-α in female skeletal muscle is not required for regulation of muscle insulin sensitivity and mitochondrial regulation.

    abstract:OBJECTIVE:Estrogen receptor-α (ERα) is a nuclear receptor family member thought to substantially contribute to the metabolic regulation of skeletal muscle. However, previous mouse models utilized to assess the necessity of ERα signaling in skeletal muscle were confounded by altered developmental programming and/or infl...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2019.12.010

    authors: Iñigo MR,Amorese AJ,Tarpey MD,Balestrieri NP,Jones KG,Patteson DJ,Jackson KC,Torres MJ,Lin CT,Smith CD,Heden TD,McMillin SL,Weyrauch LA,Stanley EC,Schmidt CA,Kilburg-Basnyat BB,Reece SW,Psaltis CE,Leinwand LA,Funai

    更新日期:2020-04-01 00:00:00

  • Metabolic remodeling of dystrophic skeletal muscle reveals biological roles for dystrophin and utrophin in adaptation and plasticity.

    abstract:OBJECTIVES:Preferential damage to fast, glycolytic myofibers is common in many muscle-wasting diseases, including Duchenne muscular dystrophy (DMD). Promoting an oxidative phenotype could protect muscles from damage and ameliorate the dystrophic pathology with therapeutic relevance, but developing efficacious strategie...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2020.101157

    authors: Hardee JP,Martins KJB,Miotto PM,Ryall JG,Gehrig SM,Reljic B,Naim T,Chung JD,Trieu J,Swiderski K,Philp AM,Philp A,Watt MJ,Stroud DA,Koopman R,Steinberg GR,Lynch GS

    更新日期:2020-12-24 00:00:00

  • Combined loss of GLP-1R and Y2R does not alter progression of high-fat diet-induced obesity or response to RYGB surgery in mice.

    abstract:OBJECTIVE:Understanding the mechanisms underlying the remarkable beneficial effects of gastric bypass surgery is important for the development of non-surgical therapies or less invasive surgeries in the fight against obesity and metabolic disease. Although the intestinal L-cell hormones glucagon-like peptide-1 (GLP-1) ...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2019.05.004

    authors: Boland BB,Mumphrey MB,Hao Z,Townsend RL,Gill B,Oldham S,Will S,Morrison CD,Yu S,Münzberg H,Rhodes CJ,Trevaskis JL,Berthoud HR

    更新日期:2019-07-01 00:00:00

  • Adipose PTEN regulates adult adipose tissue homeostasis and redistribution via a PTEN-leptin-sympathetic loop.

    abstract:OBJECTIVE:Despite the large body of work describing the tumor suppressor functions of Phosphatase and tensin homologue deleted on chromosome ten (PTEN), its roles in adipose homeostasis of adult animals are not yet fully understood. Here, we sought to determine the role of PTEN in whole-body adipose homeostasis. METHO...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2019.09.008

    authors: Huang W,Queen NJ,McMurphy TB,Ali S,Cao L

    更新日期:2019-12-01 00:00:00

  • Bidirectional manipulation of gene expression in adipocytes using CRISPRa and siRNA.

    abstract:OBJECTIVE:Functional investigation of novel gene/protein targets associated with adipocyte differentiation or function heavily relies on efficient and accessible tools to manipulate gene expression in adipocytes in vitro. Recent advances in gene-editing technologies such as CRISPR-Cas9 have not only eased gene editing ...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2017.07.001

    authors: Lundh M,Pluciñska K,Isidor MS,Petersen PSS,Emanuelli B

    更新日期:2017-10-01 00:00:00

  • Physical exercise and liver "fitness": Role of mitochondrial function and epigenetics-related mechanisms in non-alcoholic fatty liver disease.

    abstract:BACKGROUND:Modern lifestyles, especially high-caloric intake and physical inactivity, contribute to the increased prevalence of non-alcoholic fatty liver disease (NAFLD), which becomes a significant health problem worldwide. Lifestyle changes, however, affect not only parental generation, but also their offspring, rein...

    journal_title:Molecular metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.molmet.2019.11.015

    authors: Stevanović J,Beleza J,Coxito P,Ascensão A,Magalhães J

    更新日期:2020-02-01 00:00:00

  • Regulation of inflammation in diabetes: From genetics to epigenomics evidence.

    abstract:BACKGROUND:Diabetes is one of the greatest public health challenges worldwide, and we still lack complementary approaches to significantly enhance the efficacy of preventive and therapeutic approaches. Genetic and environmental factors are the culprits involved in diabetes risk. Evidence from the last decade has highli...

    journal_title:Molecular metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.molmet.2020.101041

    authors: Diedisheim M,Carcarino E,Vandiedonck C,Roussel R,Gautier JF,Venteclef N

    更新日期:2020-11-01 00:00:00

  • Vacuolar protein sorting 13C is a novel lipid droplet protein that inhibits lipolysis in brown adipocytes.

    abstract:OBJECTIVE:Brown adipose tissue (BAT) thermogenesis depends on the mobilization and oxidation of fatty acids from intracellular lipid droplets (LD) within brown adipocytes (BAs); however, the identity and function of LD proteins that control BAT lipolysis remain incomplete. Proteomic analysis of mouse BAT subcellular fr...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2017.10.014

    authors: Ramseyer VD,Kimler VA,Granneman JG

    更新日期:2018-01-01 00:00:00

  • Metabolic dysfunction in polycystic ovary syndrome: Pathogenic role of androgen excess and potential therapeutic strategies.

    abstract:BACKGROUND:Polycystic ovary syndrome (PCOS) is the most common endocrinopathy among reproductive age women. Although its cardinal manifestations include hyperandrogenism, oligo/anovulation, and/or polycystic ovarian morphology, PCOS women often display also notable metabolic comorbidities. An array of pathogenic mechan...

    journal_title:Molecular metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.molmet.2020.01.001

    authors: Sanchez-Garrido MA,Tena-Sempere M

    更新日期:2020-05-01 00:00:00

  • Cardiomyocyte glucagon receptor signaling modulates outcomes in mice with experimental myocardial infarction.

    abstract:OBJECTIVE:Glucagon is a hormone with metabolic actions that maintains normoglycemia during the fasting state. Strategies enabling either inhibition or activation of glucagon receptor (Gcgr) signaling are being explored for the treatment of diabetes or obesity. However, the cardiovascular consequences of manipulating gl...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2014.11.005

    authors: Ali S,Ussher JR,Baggio LL,Kabir MG,Charron MJ,Ilkayeva O,Newgard CB,Drucker DJ

    更新日期:2014-11-29 00:00:00

  • AVP neurons in the paraventricular nucleus of the hypothalamus regulate feeding.

    abstract::Melanocortins and their receptors are critical components of energy homeostasis and the paraventricular nucleus of the hypothalamus (PVH) is an important site of melanocortin action. Although best known for its role in osmoregulation, arginine vasopressin (AVP) has been implicated in feeding and is robustly expressed ...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2013.12.006

    authors: Pei H,Sutton AK,Burnett KH,Fuller PM,Olson DP

    更新日期:2014-01-08 00:00:00

  • Surplus fat rapidly increases fat oxidation and insulin resistance in lipodystrophic mice.

    abstract:OBJECTIVE:Surplus dietary fat cannot be converted into other macronutrient forms or excreted, so has to be stored or oxidized. Healthy mammals store excess energy in the form of triacylgycerol (TAG) in lipid droplets within adipocytes rather than oxidizing it, and thus ultimately gain weight. The 'overflow hypothesis' ...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2018.05.006

    authors: Girousse A,Virtue S,Hart D,Vidal-Puig A,Murgatroyd PR,Mouisel E,Sengenès C,Savage DB

    更新日期:2018-07-01 00:00:00

  • Integration of body temperature into the analysis of energy expenditure in the mouse.

    abstract:OBJECTIVES:We quantified the effect of environmental temperature on mouse energy homeostasis and body temperature. METHODS:The effect of environmental temperature (4-33 °C) on body temperature, energy expenditure, physical activity, and food intake in various mice (chow diet, high-fat diet, Brs3 (-/y) , lipodystrophic...

    journal_title:Molecular metabolism

    pub_type: 杂志文章

    doi:10.1016/j.molmet.2015.03.001

    authors: Abreu-Vieira G,Xiao C,Gavrilova O,Reitman ML

    更新日期:2015-03-10 00:00:00