Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative and critical review.

Abstract:

:We performed a systematic review of studies focusing on the automatic prediction of the progression of mild cognitive impairment to Alzheimer's disease (AD) dementia, and a quantitative analysis of the methodological choices impacting performance. This review included 172 articles, from which 234 experiments were extracted. For each of them, we reported the used data set, the feature types, the algorithm type, performance and potential methodological issues. The impact of these characteristics on the performance was evaluated using a multivariate mixed effect linear regressions. We found that using cognitive, fluorodeoxyglucose-positron emission tomography or potentially electroencephalography and magnetoencephalography variables significantly improved predictive performance compared to not including them, whereas including other modalities, in particular T1 magnetic resonance imaging, did not show a significant effect. The good performance of cognitive assessments questions the wide use of imaging for predicting the progression to AD and advocates for exploring further fine domain-specific cognitive assessments. We also identified several methodological issues, including the absence of a test set, or its use for feature selection or parameter tuning in nearly a fourth of the papers. Other issues, found in 15% of the studies, cast doubts on the relevance of the method to clinical practice. We also highlight that short-term predictions are likely not to be better than predicting that subjects stay stable over time. These issues highlight the importance of adhering to good practices for the use of machine learning as a decision support system for the clinical practice.

journal_name

Med Image Anal

journal_title

Medical image analysis

authors

Ansart M,Epelbaum S,Bassignana G,Bône A,Bottani S,Cattai T,Couronné R,Faouzi J,Koval I,Louis M,Thibeau-Sutre E,Wen J,Wild A,Burgos N,Dormont D,Colliot O,Durrleman S

doi

10.1016/j.media.2020.101848

subject

Has Abstract

pub_date

2021-01-01 00:00:00

pages

101848

eissn

1361-8415

issn

1361-8423

pii

S1361-8415(20)30212-7

journal_volume

67

pub_type

杂志文章
  • MR to ultrasound registration for image-guided prostate interventions.

    abstract::A deformable registration method is described that enables automatic alignment of magnetic resonance (MR) and 3D transrectal ultrasound (TRUS) images of the prostate gland. The method employs a novel "model-to-image" registration approach in which a deformable model of the gland surface, derived from an MR image, is r...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2010.11.003

    authors: Hu Y,Ahmed HU,Taylor Z,Allen C,Emberton M,Hawkes D,Barratt D

    更新日期:2012-04-01 00:00:00

  • Image guidance in orthopaedics and traumatology: A historical perspective.

    abstract::In this note we summarize the history of computer aided surgery in orthopaedics and traumatology from the end of the nineteenth century to currently observable future trends. We concentrate on the two major components of such systems, pre-operative planning and intra-operative execution. The evolution of the necessary...

    journal_title:Medical image analysis

    pub_type: 社论

    doi:10.1016/j.media.2016.06.033

    authors: Székely G,Nolte LP

    更新日期:2016-10-01 00:00:00

  • A work flow to build and validate patient specific left atrium electrophysiology models from catheter measurements.

    abstract::Biophysical models of the atrium provide a physically constrained framework for describing the current state of an atrium and allow predictions of how that atrium will respond to therapy. We propose a work flow to simulate patient specific electrophysiological heterogeneity from clinical data and validate the resultin...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.04.005

    authors: Corrado C,Williams S,Karim R,Plank G,O'Neill M,Niederer S

    更新日期:2018-07-01 00:00:00

  • Independent component analysis using prior information for signal detection in a functional imaging system of the retina.

    abstract::Independent component analysis (ICA) is a statistical technique that estimates a set of sources mixed by an unknown mixing matrix using only a set of observations. For this purpose, the only assumption is that the sources are statistically independent. In many applications, some information about the nature of the unk...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2010.06.009

    authors: Barriga ES,Pattichis M,Ts'o D,Abramoff M,Kardon R,Kwon Y,Soliz P

    更新日期:2011-02-01 00:00:00

  • Recovering from missing data in population imaging - Cardiac MR image imputation via conditional generative adversarial nets.

    abstract::Accurate ventricular volume measurements are the primary indicators of normal/abnor- mal cardiac function and are dependent on the Cardiac Magnetic Resonance (CMR) volumes being complete. However, missing or unusable slices owing to the presence of image artefacts such as respiratory or motion ghosting, aliasing, ring...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101812

    authors: Xia Y,Zhang L,Ravikumar N,Attar R,Piechnik SK,Neubauer S,Petersen SE,Frangi AF

    更新日期:2021-01-01 00:00:00

  • Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs.

    abstract::The goal of this study is to provide a theoretical framework for accurately optimizing the segmentation energy considering all of the possible shapes generated from the level-set-based statistical shape model (SSM). The proposed algorithm solves the well-known open problem, in which a shape prior may not be optimal in...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.11.003

    authors: Saito A,Nawano S,Shimizu A

    更新日期:2016-02-01 00:00:00

  • Fusion of white and gray matter geometry: a framework for investigating brain development.

    abstract::Current neuroimaging investigation of the white matter typically focuses on measurements derived from diffusion tensor imaging, such as fractional anisotropy (FA). In contrast, imaging studies of the gray matter oftentimes focus on morphological features such as cortical thickness, folding and surface curvature. As a ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.06.013

    authors: Savadjiev P,Rathi Y,Bouix S,Smith AR,Schultz RT,Verma R,Westin CF

    更新日期:2014-12-01 00:00:00

  • Intensity non-uniformity correction in MRI: existing methods and their validation.

    abstract::Magnetic resonance imaging is a popular and powerful non-invasive imaging technique. Automated analysis has become mandatory to efficiently cope with the large amount of data generated using this modality. However, several artifacts, such as intensity non-uniformity, can degrade the quality of acquired data. Intensity...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2005.09.004

    authors: Belaroussi B,Milles J,Carme S,Zhu YM,Benoit-Cattin H

    更新日期:2006-04-01 00:00:00

  • Noise reduction in diffusion MRI using non-local self-similar information in joint x-q space.

    abstract::Diffusion MRI affords valuable insights into white matter microstructures, but suffers from low signal-to-noise ratio (SNR), especially at high diffusion weighting (i.e., b-value). To avoid time-intensive repeated acquisition, post-processing algorithms are often used to reduce noise. Among existing methods, non-local...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.01.006

    authors: Chen G,Wu Y,Shen D,Yap PT

    更新日期:2019-04-01 00:00:00

  • Automated age estimation from MRI volumes of the hand.

    abstract::Highly relevant for both clinical and legal medicine applications, the established radiological methods for estimating unknown age in children and adolescents are based on visual examination of bone ossification in X-ray images of the hand. Our group has initiated the development of fully automatic age estimation meth...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101538

    authors: Štern D,Payer C,Urschler M

    更新日期:2019-12-01 00:00:00

  • High resolution cortical bone thickness measurement from clinical CT data.

    abstract::The distribution of cortical bone in the proximal femur is believed to be a critical component in determining fracture resistance. Current CT technology is limited in its ability to measure cortical thickness, especially in the sub-millimetre range which lies within the point spread function of today's clinical scanne...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2010.01.003

    authors: Treece GM,Gee AH,Mayhew PM,Poole KE

    更新日期:2010-06-01 00:00:00

  • Abdominal multi-organ segmentation with organ-attention networks and statistical fusion.

    abstract::Accurate and robust segmentation of abdominal organs on CT is essential for many clinical applications such as computer-aided diagnosis and computer-aided surgery. But this task is challenging due to the weak boundaries of organs, the complexity of the background, and the variable sizes of different organs. To address...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.04.005

    authors: Wang Y,Zhou Y,Shen W,Park S,Fishman EK,Yuille AL

    更新日期:2019-07-01 00:00:00

  • Involuntary eye motion correction in retinal optical coherence tomography: Hardware or software solution?

    abstract::In this paper, we review state-of-the-art techniques to correct eye motion artifacts in Optical Coherence Tomography (OCT) imaging. The methods for eye motion artifact reduction can be categorized into two major classes: (1) hardware-based techniques and (2) software-based techniques. In the first class, additional ha...

    journal_title:Medical image analysis

    pub_type: 杂志文章,评审

    doi:10.1016/j.media.2017.02.002

    authors: Baghaie A,Yu Z,D'Souza RM

    更新日期:2017-04-01 00:00:00

  • Wavelet optimization for content-based image retrieval in medical databases.

    abstract::We propose in this article a content-based image retrieval (CBIR) method for diagnosis aid in medical fields. In the proposed system, images are indexed in a generic fashion, without extracting domain-specific features: a signature is built for each image from its wavelet transform. These image signatures characterize...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2009.11.004

    authors: Quellec G,Lamard M,Cazuguel G,Cochener B,Roux C

    更新日期:2010-04-01 00:00:00

  • Non-invasive estimation of relative pressure in turbulent flow using virtual work-energy.

    abstract::Vascular pressure differences are established risk markers for a number of cardiovascular diseases. Relative pressures are, however, often driven by turbulence-induced flow fluctuations, where conventional non-invasive methods may yield inaccurate results. Recently, we proposed a novel method for non-turbulent flows, ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101627

    authors: Marlevi D,Ha H,Dillon-Murphy D,Fernandes JF,Fovargue D,Colarieti-Tosti M,Larsson M,Lamata P,Figueroa CA,Ebbers T,Nordsletten DA

    更新日期:2020-02-01 00:00:00

  • PCA-based groupwise image registration for quantitative MRI.

    abstract::Quantitative magnetic resonance imaging (qMRI) is a technique for estimating quantitative tissue properties, such as the T1 and T2 relaxation times, apparent diffusion coefficient (ADC), and various perfusion measures. This estimation is achieved by acquiring multiple images with different acquisition parameters (or a...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.12.004

    authors: Huizinga W,Poot DH,Guyader JM,Klaassen R,Coolen BF,van Kranenburg M,van Geuns RJ,Uitterdijk A,Polfliet M,Vandemeulebroucke J,Leemans A,Niessen WJ,Klein S

    更新日期:2016-04-01 00:00:00

  • Towards model-based analysis of cardiac MR tagging data: relation between left ventricular shear strain and myofiber orientation.

    abstract::Many cardiac pathologies are reflected in abnormal myocardial deformation, accessible through magnetic resonance tagging (MRT). Interpretation of the MRT data is difficult, since the relation between pathology and deformation is not straightforward. Mathematical models of cardiac mechanics could be used to translate m...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2006.04.001

    authors: Ubbink SW,Bovendeerd PH,Delhaas T,Arts T,van de Vosse FN

    更新日期:2006-08-01 00:00:00

  • Expert-validated estimation of diagnostic uncertainty for deep neural networks in diabetic retinopathy detection.

    abstract::Deep learning-based systems can achieve a diagnostic performance comparable to physicians in a variety of medical use cases including the diagnosis of diabetic retinopathy. To be useful in clinical practice, it is necessary to have well calibrated measures of the uncertainty with which these systems report their decis...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101724

    authors: Ayhan MS,Kühlewein L,Aliyeva G,Inhoffen W,Ziemssen F,Berens P

    更新日期:2020-08-01 00:00:00

  • A subject-specific technique for respiratory motion correction in image-guided cardiac catheterisation procedures.

    abstract::We describe a system for respiratory motion correction of MRI-derived roadmaps for use in X-ray guided cardiac catheterisation procedures. The technique uses a subject-specific affine motion model that is quickly constructed from a short pre-procedure MRI scan. We test a dynamic MRI sequence that acquires a small numb...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2009.01.003

    authors: King AP,Boubertakh R,Rhode KS,Ma YL,Chinchapatnam P,Gao G,Tangcharoen T,Ginks M,Cooklin M,Gill JS,Hawkes DJ,Razavi RS,Schaeffter T

    更新日期:2009-06-01 00:00:00

  • Capturing intraoperative deformations: research experience at Brigham and Women's Hospital.

    abstract::During neurosurgical procedures the objective of the neurosurgeon is to achieve the resection of as much diseased tissue as possible while achieving the preservation of healthy brain tissue. The restricted capacity of the conventional operating room to enable the surgeon to visualize critical healthy brain structures ...

    journal_title:Medical image analysis

    pub_type: 杂志文章,评审

    doi:10.1016/j.media.2004.11.005

    authors: Warfield SK,Haker SJ,Talos IF,Kemper CA,Weisenfeld N,Mewes AU,Goldberg-Zimring D,Zou KH,Westin CF,Wells WM,Tempany CM,Golby A,Black PM,Jolesz FA,Kikinis R

    更新日期:2005-04-01 00:00:00

  • A spatiotemporal statistical atlas of motion for the quantification of abnormal myocardial tissue velocities.

    abstract::In this paper, we present a new method for the automatic comparison of myocardial motion patterns and the characterization of their degree of abnormality, based on a statistical atlas of motion built from a reference healthy population. Our main contribution is the computation of atlas-based indexes that quantify the ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2010.12.006

    authors: Duchateau N,De Craene M,Piella G,Silva E,Doltra A,Sitges M,Bijnens BH,Frangi AF

    更新日期:2011-06-01 00:00:00

  • Robust estimation of carotid artery wall motion using the elasticity-based state-space approach.

    abstract::The dynamics of the carotid artery wall has been recognized as a valuable indicator to evaluate the status of atherosclerotic disease in the preclinical stage. However, it is still a challenge to accurately measure this dynamics from ultrasound images. This paper aims at developing an elasticity-based state-space appr...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2017.01.004

    authors: Gao Z,Xiong H,Liu X,Zhang H,Ghista D,Wu W,Li S

    更新日期:2017-04-01 00:00:00

  • Multi-task exclusive relationship learning for alzheimer's disease progression prediction with longitudinal data.

    abstract::Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive impairment of memory and other cognitive functions. Currently, many multi-task learning approaches have been proposed to predict the disease progression at the early stage using longitudinal data, with each task corresponding to a pa...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.01.007

    authors: Wang M,Zhang D,Shen D,Liu M

    更新日期:2019-04-01 00:00:00

  • Adaptive, template moderated, spatially varying statistical classification.

    abstract::A novel image segmentation algorithm was developed to allow the automatic segmentation of both normal and abnormal anatomy from medical images. The new algorithm is a form of spatially varying statistical classification, in which an explicit anatomical template is used to moderate the segmentation obtained by statisti...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(00)00003-7

    authors: Warfield SK,Kaus M,Jolesz FA,Kikinis R

    更新日期:2000-03-01 00:00:00

  • Vessel extraction from non-fluorescein fundus images using orientation-aware detector.

    abstract::The automatic extraction of blood vessels in non-fluorescein eye fundus images is a tough task in applications such as diabetic retinopathy screening. However, vessel shapes have complex variations, and accurate modeling of retinal vascular structures is challenging. We have therefore developed a new approach to accur...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.09.002

    authors: Yin B,Li H,Sheng B,Hou X,Chen Y,Wu W,Li P,Shen R,Bao Y,Jia W

    更新日期:2015-12-01 00:00:00

  • An accurate, fast and robust method to generate patient-specific cubic Hermite meshes.

    abstract::In-silico continuum simulations of organ and tissue scale physiology often require a discretisation or mesh of the solution domain. Cubic Hermite meshes provide a smooth representation of anatomy that is well-suited for simulating large deformation mechanics. Models of organ mechanics and deformation have demonstrated...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.06.010

    authors: Lamata P,Niederer S,Nordsletten D,Barber DC,Roy I,Hose DR,Smith N

    更新日期:2011-12-01 00:00:00

  • Dynamic MRI reconstruction with end-to-end motion-guided network.

    abstract::Temporal correlation in dynamic magnetic resonance imaging (MRI), such as cardiac MRI, is informative and important to understand motion mechanisms of body regions. Modeling such information into the MRI reconstruction process produces temporally coherent image sequence and reduces imaging artifacts and blurring. Howe...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101901

    authors: Huang Q,Xian Y,Yang D,Qu H,Yi J,Wu P,Metaxas DN

    更新日期:2021-02-01 00:00:00

  • A computational diffusion MRI and parametric dictionary learning framework for modeling the diffusion signal and its features.

    abstract::In this work, we first propose an original and efficient computational framework to model continuous diffusion MRI (dMRI) signals and analytically recover important diffusion features such as the Ensemble Average Propagator (EAP) and the Orientation Distribution Function (ODF). Then, we develop an efficient parametric...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2013.04.011

    authors: Merlet S,Caruyer E,Ghosh A,Deriche R

    更新日期:2013-10-01 00:00:00

  • Semi-supervised mp-MRI data synthesis with StitchLayer and auxiliary distance maximization.

    abstract::The availability of a large amount of annotated data is critical for many medical image analysis applications, in particular for those relying on deep learning methods which are known to be data-hungry. However, annotated medical data, especially multimodal data, is often scarce and costly to obtain. In this paper, we...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101565

    authors: Wang Z,Lin Y,Cheng KT,Yang X

    更新日期:2020-01-01 00:00:00

  • Hierarchical performance estimation in the statistical label fusion framework.

    abstract::Label fusion is a critical step in many image segmentation frameworks (e.g., multi-atlas segmentation) as it provides a mechanism for generalizing a collection of labeled examples into a single estimate of the underlying segmentation. In the multi-label case, typical label fusion algorithms treat all labels equally - ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.06.005

    authors: Asman AJ,Landman BA

    更新日期:2014-10-01 00:00:00