An accurate, fast and robust method to generate patient-specific cubic Hermite meshes.

Abstract:

:In-silico continuum simulations of organ and tissue scale physiology often require a discretisation or mesh of the solution domain. Cubic Hermite meshes provide a smooth representation of anatomy that is well-suited for simulating large deformation mechanics. Models of organ mechanics and deformation have demonstrated significant potential for clinical application. However, the production of a personalised mesh from patient's anatomy using medical images remains a major bottleneck in simulation workflows. To address this issue, we have developed an accurate, fast and automatic method for deriving patient-specific cubic Hermite meshes. The proposed solution customises a predefined template with a fast binary image registration step and a novel cubic Hermite mesh warping constructed using a variational technique. Image registration is used to retrieve the mapping field between the template mesh and the patient images. The variational warping technique then finds a smooth and accurate projection of this field into the basis functions of the mesh. Applying this methodology, cubic Hermite meshes are fitted to the binary description of shape with sub-voxel accuracy and within a few minutes, which is a significant advance over the existing state of the art methods. To demonstrate its clinical utility, a generic cubic Hermite heart biventricular model is personalised to the anatomy of four patients, and the resulting mechanical stability of these customised meshes is successfully demonstrated.

journal_name

Med Image Anal

journal_title

Medical image analysis

authors

Lamata P,Niederer S,Nordsletten D,Barber DC,Roy I,Hose DR,Smith N

doi

10.1016/j.media.2011.06.010

subject

Has Abstract

pub_date

2011-12-01 00:00:00

pages

801-13

issue

6

eissn

1361-8415

issn

1361-8423

pii

S1361-8415(11)00097-1

journal_volume

15

pub_type

杂志文章
  • 4D hyperspherical harmonic (HyperSPHARM) representation of surface anatomy: a holistic treatment of multiple disconnected anatomical structures.

    abstract::Image-based parcellation of the brain often leads to multiple disconnected anatomical structures, which pose significant challenges for analyses of morphological shapes. Existing shape models, such as the widely used spherical harmonic (SPHARM) representation, assume topological invariance, so are unable to simultaneo...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.02.004

    authors: Pasha Hosseinbor A,Chung MK,Koay CG,Schaefer SM,van Reekum CM,Schmitz LP,Sutterer M,Alexander AL,Davidson RJ

    更新日期:2015-05-01 00:00:00

  • A gradient-based optical-flow cardiac motion estimation method for cine and tagged MR images.

    abstract::A new method is proposed to quantify the myocardial motion from both 2D C(ine)-MRI and T(agged)-MRI sequences. The tag pattern offers natural landmarks within the image that makes it possible to accurately quantify the motion within the myocardial wall. Therefore, several methods have been proposed for T-MRI. However,...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.06.016

    authors: Wang L,Clarysse P,Liu Z,Gao B,Liu W,Croisille P,Delachartre P

    更新日期:2019-10-01 00:00:00

  • Spine detection in CT and MR using iterated marginal space learning.

    abstract::Examinations of the spinal column with both, Magnetic Resonance (MR) imaging and Computed Tomography (CT), often require a precise three-dimensional positioning, angulation and labeling of the spinal disks and the vertebrae. A fully automatic and robust approach is a prerequisite for an automated scan alignment as wel...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2012.09.007

    authors: Michael Kelm B,Wels M,Kevin Zhou S,Seifert S,Suehling M,Zheng Y,Comaniciu D

    更新日期:2013-12-01 00:00:00

  • Coupling of fluid and elastic models for biomechanical simulations of brain deformations using FEM.

    abstract::In order to improve the accuracy of image-guided neurosurgery, different biomechanical models have been developed to correct preoperative images with respect to intraoperative changes like brain shift or tumor resection. All existing biomechanical models simulate different anatomical structures by using either appropr...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(02)00059-2

    authors: Hagemann A,Rohr K,Stiehl HS

    更新日期:2002-12-01 00:00:00

  • A review of machine learning methods for retinal blood vessel segmentation and artery/vein classification.

    abstract::The eye affords a unique opportunity to inspect a rich part of the human microvasculature non-invasively via retinal imaging. Retinal blood vessel segmentation and classification are prime steps for the diagnosis and risk assessment of microvascular and systemic diseases. A high volume of techniques based on deep lear...

    journal_title:Medical image analysis

    pub_type: 杂志文章,评审

    doi:10.1016/j.media.2020.101905

    authors: Mookiah MRK,Hogg S,MacGillivray TJ,Prathiba V,Pradeepa R,Mohan V,Anjana RM,Doney AS,Palmer CNA,Trucco E

    更新日期:2021-02-01 00:00:00

  • Rubik's Cube+: A self-supervised feature learning framework for 3D medical image analysis.

    abstract::Due to the development of deep learning, an increasing number of research works have been proposed to establish automated analysis systems for 3D volumetric medical data to improve the quality of patient care. However, it is challenging to obtain a large number of annotated 3D medical data needed to train a neural net...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101746

    authors: Zhu J,Li Y,Hu Y,Ma K,Zhou SK,Zheng Y

    更新日期:2020-08-01 00:00:00

  • Intrasubject multimodal groupwise registration with the conditional template entropy.

    abstract::Image registration is an important task in medical image analysis. Whereas most methods are designed for the registration of two images (pairwise registration), there is an increasing interest in simultaneously aligning more than two images using groupwise registration. Multimodal registration in a groupwise setting r...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.02.003

    authors: Polfliet M,Klein S,Huizinga W,Paulides MM,Niessen WJ,Vandemeulebroucke J

    更新日期:2018-05-01 00:00:00

  • CATARACTS: Challenge on automatic tool annotation for cataRACT surgery.

    abstract::Surgical tool detection is attracting increasing attention from the medical image analysis community. The goal generally is not to precisely locate tools in images, but rather to indicate which tools are being used by the surgeon at each instant. The main motivation for annotating tool usage is to design efficient sol...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.11.008

    authors: Al Hajj H,Lamard M,Conze PH,Roychowdhury S,Hu X,Maršalkaitė G,Zisimopoulos O,Dedmari MA,Zhao F,Prellberg J,Sahu M,Galdran A,Araújo T,Vo DM,Panda C,Dahiya N,Kondo S,Bian Z,Vahdat A,Bialopetravičius J,Flouty E,Qiu

    更新日期:2019-02-01 00:00:00

  • A symbolic environment for visualizing activated foci in functional neuroimaging datasets.

    abstract::This paper presents a symbolic visualization environment known as the Corner Cube environment, which was developed to facilitate rapid examination and comparison of activated foci defined by analyses of functional neuroimaging datasets. We have performed a comparative evaluation of this environment against maximum-int...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(98)80020-0

    authors: Rehm K,Lakshminaryan K,Frutiger S,Schaper KA,Sumners DW,Strother SC,Anderson JR,Rottenberg DA

    更新日期:1998-09-01 00:00:00

  • Evaluation of algorithms for Multi-Modality Whole Heart Segmentation: An open-access grand challenge.

    abstract::Knowledge of whole heart anatomy is a prerequisite for many clinical applications. Whole heart segmentation (WHS), which delineates substructures of the heart, can be very valuable for modeling and analysis of the anatomy and functions of the heart. However, automating this segmentation can be challenging due to the l...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101537

    authors: Zhuang X,Li L,Payer C,Štern D,Urschler M,Heinrich MP,Oster J,Wang C,Smedby Ö,Bian C,Yang X,Heng PA,Mortazi A,Bagci U,Yang G,Sun C,Galisot G,Ramel JY,Brouard T,Tong Q,Si W,Liao X,Zeng G,Shi Z,Zheng G,Wang

    更新日期:2019-12-01 00:00:00

  • Abdominal multi-organ segmentation with organ-attention networks and statistical fusion.

    abstract::Accurate and robust segmentation of abdominal organs on CT is essential for many clinical applications such as computer-aided diagnosis and computer-aided surgery. But this task is challenging due to the weak boundaries of organs, the complexity of the background, and the variable sizes of different organs. To address...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.04.005

    authors: Wang Y,Zhou Y,Shen W,Park S,Fishman EK,Yuille AL

    更新日期:2019-07-01 00:00:00

  • A novel cortical thickness estimation method based on volumetric Laplace-Beltrami operator and heat kernel.

    abstract::Cortical thickness estimation in magnetic resonance imaging (MRI) is an important technique for research on brain development and neurodegenerative diseases. This paper presents a heat kernel based cortical thickness estimation algorithm, which is driven by the graph spectrum and the heat kernel theory, to capture the...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.01.005

    authors: Wang G,Zhang X,Su Q,Shi J,Caselli RJ,Wang Y,Alzheimer’s Disease Neuroimaging Initiative.

    更新日期:2015-05-01 00:00:00

  • An automated pipeline for cortical sulcal fundi extraction.

    abstract::In this paper, we propose a novel automated pipeline for extraction of sulcal fundi from triangulated cortical surfaces. This method consists of four consecutive steps. Firstly, we adopt a finite difference method to estimate principal curvatures, principal directions and curvature derivatives, along the principal dir...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2010.01.005

    authors: Li G,Guo L,Nie J,Liu T

    更新日期:2010-06-01 00:00:00

  • Automated classification of lung bronchovascular anatomy in CT using AdaBoost.

    abstract::Lung CAD systems require the ability to classify a variety of pulmonary structures as part of the diagnostic process. The purpose of this work was to develop a methodology for fully automated voxel-by-voxel classification of airways, fissures, nodules, and vessels from chest CT images using a single feature set and cl...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2007.03.004

    authors: Ochs RA,Goldin JG,Abtin F,Kim HJ,Brown K,Batra P,Roback D,McNitt-Gray MF,Brown MS

    更新日期:2007-06-01 00:00:00

  • Integrating segmentation methods from the Insight Toolkit into a visualization application.

    abstract::The Insight Toolkit (ITK) initiative from the National Library of Medicine has provided a suite of state-of-the-art segmentation and registration algorithms ideally suited to volume visualization and analysis. A volume visualization application that effectively utilizes these algorithms provides many benefits: it allo...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2005.04.009

    authors: Martin K,Ibáñez L,Avila L,Barré S,Kaspersen JH

    更新日期:2005-12-01 00:00:00

  • Hierarchical segmentation using equivalence test (HiSET): Application to DCE image sequences.

    abstract::Dynamical contrast enhanced (DCE) imaging allows non invasive access to tissue micro-vascularization. It appears as a promising tool to build imaging biomarkers for diagnostic, prognosis or anti-angiogenesis treatment monitoring of cancer. However, quantitative analysis of DCE image sequences suffers from low signal t...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.10.007

    authors: Liu F,Cuenod CA,Thomassin-Naggara I,Chemouny S,Rozenholc Y

    更新日期:2019-01-01 00:00:00

  • Recovering from missing data in population imaging - Cardiac MR image imputation via conditional generative adversarial nets.

    abstract::Accurate ventricular volume measurements are the primary indicators of normal/abnor- mal cardiac function and are dependent on the Cardiac Magnetic Resonance (CMR) volumes being complete. However, missing or unusable slices owing to the presence of image artefacts such as respiratory or motion ghosting, aliasing, ring...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101812

    authors: Xia Y,Zhang L,Ravikumar N,Attar R,Piechnik SK,Neubauer S,Petersen SE,Frangi AF

    更新日期:2021-01-01 00:00:00

  • Groupwise multi-atlas segmentation of the spinal cord's internal structure.

    abstract::The spinal cord is an essential and vulnerable component of the central nervous system. Differentiating and localizing the spinal cord internal structure (i.e., gray matter vs. white matter) is critical for assessment of therapeutic impacts and determining prognosis of relevant conditions. Fortunately, new magnetic re...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.01.003

    authors: Asman AJ,Bryan FW,Smith SA,Reich DS,Landman BA

    更新日期:2014-04-01 00:00:00

  • Interactive training system for interventional electrocardiology procedures.

    abstract::Recent progress in cardiac catheterization and devices has allowed the development of new therapies for severe cardiac diseases like arrhythmias and heart failure. The skills required for such interventions are very challenging to learn, and are typically acquired over several years. Virtual reality simulators may red...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2016.06.040

    authors: Talbot H,Spadoni F,Duriez C,Sermesant M,O'Neill M,Jaïs P,Cotin S,Delingette H

    更新日期:2017-01-01 00:00:00

  • Dynamic MRI reconstruction with end-to-end motion-guided network.

    abstract::Temporal correlation in dynamic magnetic resonance imaging (MRI), such as cardiac MRI, is informative and important to understand motion mechanisms of body regions. Modeling such information into the MRI reconstruction process produces temporally coherent image sequence and reduces imaging artifacts and blurring. Howe...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101901

    authors: Huang Q,Xian Y,Yang D,Qu H,Yi J,Wu P,Metaxas DN

    更新日期:2021-02-01 00:00:00

  • Automated localization of breast cancer in DCE-MRI.

    abstract::Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is increasingly being used for the detection and diagnosis of breast cancer. Compared to mammography, DCE-MRI provides higher sensitivity, however its specificity is variable. Moreover, DCE-MRI data analysis is time consuming and depends on reader expertis...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.12.001

    authors: Gubern-Mérida A,Martí R,Melendez J,Hauth JL,Mann RM,Karssemeijer N,Platel B

    更新日期:2015-02-01 00:00:00

  • Clavicle segmentation in chest radiographs.

    abstract::Automated delineation of anatomical structures in chest radiographs is difficult due to superimposition of multiple structures. In this work an automated technique to segment the clavicles in posterior-anterior chest radiographs is presented in which three methods are combined. Pixel classification is applied in two s...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2012.06.009

    authors: Hogeweg L,Sánchez CI,de Jong PA,Maduskar P,van Ginneken B

    更新日期:2012-12-01 00:00:00

  • An improved deep network for tissue microstructure estimation with uncertainty quantification.

    abstract::Deep learning based methods have improved the estimation of tissue microstructure from diffusion magnetic resonance imaging (dMRI) scans acquired with a reduced number of diffusion gradients. These methods learn the mapping from diffusion signals in a voxel or patch to tissue microstructure measures. In particular, it...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101650

    authors: Ye C,Li Y,Zeng X

    更新日期:2020-04-01 00:00:00

  • Intensity inhomogeneity correction of SD-OCT data using macular flatspace.

    abstract::Images of the retina acquired using optical coherence tomography (OCT) often suffer from intensity inhomogeneity problems that degrade both the quality of the images and the performance of automated algorithms utilized to measure structural changes. This intensity variation has many causes, including off-axis acquisit...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2017.09.008

    authors: Lang A,Carass A,Jedynak BM,Solomon SD,Calabresi PA,Prince JL

    更新日期:2018-01-01 00:00:00

  • Understanding the phase contrast optics to restore artifact-free microscopy images for segmentation.

    abstract::Phase contrast, a noninvasive microscopy imaging technique, is widely used to capture time-lapse images to monitor the behavior of transparent cells without staining or altering them. Due to the optical principle, phase contrast microscopy images contain artifacts such as the halo and shade-off that hinder image segme...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.12.006

    authors: Yin Z,Kanade T,Chen M

    更新日期:2012-07-01 00:00:00

  • Hierarchical spherical deformation for cortical surface registration.

    abstract::We present hierarchical spherical deformation for a group-wise shape correspondence to address template selection bias and to minimize registration distortion. In this work, we aim at a continuous and smooth deformation field to guide accurate cortical surface registration. In conventional spherical registration metho...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.06.013

    authors: Lyu I,Kang H,Woodward ND,Styner MA,Landman BA

    更新日期:2019-10-01 00:00:00

  • Robust estimation of carotid artery wall motion using the elasticity-based state-space approach.

    abstract::The dynamics of the carotid artery wall has been recognized as a valuable indicator to evaluate the status of atherosclerotic disease in the preclinical stage. However, it is still a challenge to accurately measure this dynamics from ultrasound images. This paper aims at developing an elasticity-based state-space appr...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2017.01.004

    authors: Gao Z,Xiong H,Liu X,Zhang H,Ghista D,Wu W,Li S

    更新日期:2017-04-01 00:00:00

  • Segmentation of lumen and outer wall of abdominal aortic aneurysms from 3D black-blood MRI with a registration based geodesic active contour model.

    abstract::Segmentation of the geometric morphology of abdominal aortic aneurysm is important for interventional planning. However, the segmentation of both the lumen and the outer wall of aneurysm in magnetic resonance (MR) image remains challenging. This study proposes a registration based segmentation methodology for efficien...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2017.05.005

    authors: Wang Y,Seguro F,Kao E,Zhang Y,Faraji F,Zhu C,Haraldsson H,Hope M,Saloner D,Liu J

    更新日期:2017-08-01 00:00:00

  • Pseudo-healthy synthesis with pathology disentanglement and adversarial learning.

    abstract::Pseudo-healthy synthesis is the task of creating a subject-specific 'healthy' image from a pathological one. Such images can be helpful in tasks such as anomaly detection and understanding changes induced by pathology and disease. In this paper, we present a model that is encouraged to disentangle the information of p...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101719

    authors: Xia T,Chartsias A,Tsaftaris SA

    更新日期:2020-08-01 00:00:00

  • A deep network for tissue microstructure estimation using modified LSTM units.

    abstract::Diffusion magnetic resonance imaging (dMRI) offers a unique tool for noninvasively assessing tissue microstructure. However, accurate estimation of tissue microstructure described by complicated signal models can be challenging when a reduced number of diffusion gradients are used. Deep learning based microstructure e...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.04.006

    authors: Ye C,Li X,Chen J

    更新日期:2019-07-01 00:00:00