Multimodal image registration using floating regressors in the joint intensity scatter plot.

Abstract:

:This paper presents a new approach for multimodal medical image registration and compares it to normalized mutual information (NMI) and the correlation ratio (CR). Like NMI and CR, the new method's measure of registration quality is based on the distribution of points in the joint intensity scatter plot (JISP); compact clusters indicate good registration. This method iteratively fits the JISP clusters with regressors (in the form of points and line segments), and uses those regressors to efficiently compute the next motion increment. The result is a striking, dynamic process in which the regressors float around the JISP, tracking groups of points as they contract into tight clusters. One of the method's strengths is that it is intuitive and customizable, offering a multitude of ways to incorporate prior knowledge to guide the registration process. Moreover, the method is adaptive, and can adjust itself to fit data that does not quite match the prior model. Finally, the method is efficiently expandable to higher-dimensional scatter plots, avoiding the "curse of dimensionality" inherent in histogram-based registration methods such as MI and NMI. In two sets of experiments, a simple implementation of the new registration framework is shown to be comparable to (if not superior to) state-of-the-art implementations of NMI and CR in both accuracy and convergence robustness.

journal_name

Med Image Anal

journal_title

Medical image analysis

authors

Orchard J

doi

10.1016/j.media.2007.12.002

subject

Has Abstract

pub_date

2008-08-01 00:00:00

pages

385-96

issue

4

eissn

1361-8415

issn

1361-8423

pii

S1361-8415(08)00005-4

journal_volume

12

pub_type

杂志文章
  • Towards model-based analysis of cardiac MR tagging data: relation between left ventricular shear strain and myofiber orientation.

    abstract::Many cardiac pathologies are reflected in abnormal myocardial deformation, accessible through magnetic resonance tagging (MRT). Interpretation of the MRT data is difficult, since the relation between pathology and deformation is not straightforward. Mathematical models of cardiac mechanics could be used to translate m...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2006.04.001

    authors: Ubbink SW,Bovendeerd PH,Delhaas T,Arts T,van de Vosse FN

    更新日期:2006-08-01 00:00:00

  • Segmentation of the visible human for high-quality volume-based visualization.

    abstract::This article describes a combination of interactive classification and super-sampling visualization algorithms that greatly enhances the realism of 3-D reconstructions of the Visible Human data sets. Objects are classified on the basis of ellipsoidal regions in RGB space. The ellipsoids are used for super-sampling in ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(97)85001-3

    authors: Schiemann T,Tiede U,Höhne KH

    更新日期:1997-09-01 00:00:00

  • Equilibrated warping: Finite element image registration with finite strain equilibrium gap regularization.

    abstract::In this paper, we propose a novel continuum finite strain formulation of the equilibrium gap regularization for image registration. The equilibrium gap regularization essentially penalizes any deviation from the solution of a hyperelastic body in equilibrium with arbitrary loads prescribed at the boundary. It thus rep...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.07.007

    authors: Genet M,Stoeck CT,von Deuster C,Lee LC,Kozerke S

    更新日期:2018-12-01 00:00:00

  • Image guidance in orthopaedics and traumatology: A historical perspective.

    abstract::In this note we summarize the history of computer aided surgery in orthopaedics and traumatology from the end of the nineteenth century to currently observable future trends. We concentrate on the two major components of such systems, pre-operative planning and intra-operative execution. The evolution of the necessary...

    journal_title:Medical image analysis

    pub_type: 社论

    doi:10.1016/j.media.2016.06.033

    authors: Székely G,Nolte LP

    更新日期:2016-10-01 00:00:00

  • Segmentation of pulmonary nodules of various densities with morphological approaches and convexity models.

    abstract::Accurate segmentation of a pulmonary nodule is an important and active area of research in medical image processing. Although many algorithms have been reported in literature for this problem, those that are applicable to various density types have not been available until recently. In this paper, we propose a new alg...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2010.08.005

    authors: Kubota T,Jerebko AK,Dewan M,Salganicoff M,Krishnan A

    更新日期:2011-02-01 00:00:00

  • Rubik's Cube+: A self-supervised feature learning framework for 3D medical image analysis.

    abstract::Due to the development of deep learning, an increasing number of research works have been proposed to establish automated analysis systems for 3D volumetric medical data to improve the quality of patient care. However, it is challenging to obtain a large number of annotated 3D medical data needed to train a neural net...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101746

    authors: Zhu J,Li Y,Hu Y,Ma K,Zhou SK,Zheng Y

    更新日期:2020-08-01 00:00:00

  • Automatic detection of over 100 anatomical landmarks in medical CT images: A framework with independent detectors and combinatorial optimization.

    abstract::An automatic detection method for 197 anatomically defined landmarks in computed tomography (CT) volumes is presented. The proposed method can handle missed landmarks caused by detection failure, a limited imaging range and other problems using a novel combinatorial optimization framework with a two-stage sampling alg...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2016.04.001

    authors: Hanaoka S,Shimizu A,Nemoto M,Nomura Y,Miki S,Yoshikawa T,Hayashi N,Ohtomo K,Masutani Y

    更新日期:2017-01-01 00:00:00

  • Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs.

    abstract::The goal of this study is to provide a theoretical framework for accurately optimizing the segmentation energy considering all of the possible shapes generated from the level-set-based statistical shape model (SSM). The proposed algorithm solves the well-known open problem, in which a shape prior may not be optimal in...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.11.003

    authors: Saito A,Nawano S,Shimizu A

    更新日期:2016-02-01 00:00:00

  • Adaptive local window for level set segmentation of CT and MRI liver lesions.

    abstract::We propose a novel method, the adaptive local window, for improving level set segmentation technique. The window is estimated separately for each contour point, over iterations of the segmentation process, and for each individual object. Our method considers the object scale, the spatial texture, and the changes of th...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2017.01.002

    authors: Hoogi A,Beaulieu CF,Cunha GM,Heba E,Sirlin CB,Napel S,Rubin DL

    更新日期:2017-04-01 00:00:00

  • CT male pelvic organ segmentation using fully convolutional networks with boundary sensitive representation.

    abstract::Accurate segmentation of the prostate and organs at risk (e.g., bladder and rectum) in CT images is a crucial step for radiation therapy in the treatment of prostate cancer. However, it is a very challenging task due to unclear boundaries, large intra- and inter-patient shape variability, and uncertain existence of bo...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.03.003

    authors: Wang S,He K,Nie D,Zhou S,Gao Y,Shen D

    更新日期:2019-05-01 00:00:00

  • Quantification of the detailed cardiac left ventricular trabecular morphogenesis in the mouse embryo.

    abstract::During embryogenesis, a mammalian heart develops from a simple tubular shape into a complex 4-chamber organ, going through four distinct phases: early primitive tubular heart, emergence of trabeculations, trabecular remodeling and development of the compact myocardium. In this paper we propose a framework for standard...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.08.001

    authors: Paun B,Bijnens B,Cook AC,Mohun TJ,Butakoff C

    更新日期:2018-10-01 00:00:00

  • CorteXpert: A model-based method for automatic renal cortex segmentation.

    abstract::This paper introduces a model-based approach for a fully automatic delineation of kidney and cortex tissue from contrast-enhanced abdominal CT scans. The proposed framework, named CorteXpert, consists of two new strategies for kidney tissue delineation: cortex model adaptation and non-uniform graph search. CorteXpert ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2017.06.010

    authors: Xiang D,Bagci U,Jin C,Shi F,Zhu W,Yao J,Sonka M,Chen X

    更新日期:2017-12-01 00:00:00

  • A comparison of freehand three-dimensional ultrasound reconstruction techniques.

    abstract::Three-dimensional freehand ultrasound imaging produces a set of irregularly spaced B-scans, which are typically reconstructed on a regular grid for visualization and data analysis. Most standard reconstruction algorithms are designed to minimize computational requirements and do not exploit the underlying shape of the...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(99)80028-0

    authors: Rohling R,Gee A,Berman L

    更新日期:1999-12-01 00:00:00

  • Understanding the phase contrast optics to restore artifact-free microscopy images for segmentation.

    abstract::Phase contrast, a noninvasive microscopy imaging technique, is widely used to capture time-lapse images to monitor the behavior of transparent cells without staining or altering them. Due to the optical principle, phase contrast microscopy images contain artifacts such as the halo and shade-off that hinder image segme...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.12.006

    authors: Yin Z,Kanade T,Chen M

    更新日期:2012-07-01 00:00:00

  • Interactive training system for interventional electrocardiology procedures.

    abstract::Recent progress in cardiac catheterization and devices has allowed the development of new therapies for severe cardiac diseases like arrhythmias and heart failure. The skills required for such interventions are very challenging to learn, and are typically acquired over several years. Virtual reality simulators may red...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2016.06.040

    authors: Talbot H,Spadoni F,Duriez C,Sermesant M,O'Neill M,Jaïs P,Cotin S,Delingette H

    更新日期:2017-01-01 00:00:00

  • Concurrent tumor segmentation and registration with uncertainty-based sparse non-uniform graphs.

    abstract::In this paper, we present a graph-based concurrent brain tumor segmentation and atlas to diseased patient registration framework. Both segmentation and registration problems are modeled using a unified pairwise discrete Markov Random Field model on a sparse grid superimposed to the image domain. Segmentation is addres...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.02.006

    authors: Parisot S,Wells W 3rd,Chemouny S,Duffau H,Paragios N

    更新日期:2014-05-01 00:00:00

  • Multiple instance learning for classification of dementia in brain MRI.

    abstract::Machine learning techniques have been widely used to detect morphological abnormalities from structural brain magnetic resonance imaging data and to support the diagnosis of neurological diseases such as dementia. In this paper, we propose to use a multiple instance learning (MIL) method in an application for the dete...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.04.006

    authors: Tong T,Wolz R,Gao Q,Guerrero R,Hajnal JV,Rueckert D,Alzheimer’s Disease Neuroimaging Initiative.

    更新日期:2014-07-01 00:00:00

  • Confhusius: a robust and fully automatic calibration method for 3D freehand ultrasound.

    abstract::This paper describes a new robust and fully automatic method for calibration of three-dimensional (3D) freehand ultrasound called Confhusius (CalibratiON for FreeHand UltraSound Imaging USage). 3D Freehand ultrasound consists in mounting a position sensor on a standard probe. The echographic B-scans can be localized i...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2004.06.021

    authors: Rousseau F,Hellier P,Barillot C

    更新日期:2005-02-01 00:00:00

  • An improved deep network for tissue microstructure estimation with uncertainty quantification.

    abstract::Deep learning based methods have improved the estimation of tissue microstructure from diffusion magnetic resonance imaging (dMRI) scans acquired with a reduced number of diffusion gradients. These methods learn the mapping from diffusion signals in a voxel or patch to tissue microstructure measures. In particular, it...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101650

    authors: Ye C,Li Y,Zeng X

    更新日期:2020-04-01 00:00:00

  • Cardiac image modelling: Breadth and depth in heart disease.

    abstract::With the advent of large-scale imaging studies and big health data, and the corresponding growth in analytics, machine learning and computational image analysis methods, there are now exciting opportunities for deepening our understanding of the mechanisms and characteristics of heart disease. Two emerging fields are ...

    journal_title:Medical image analysis

    pub_type: 社论,评审

    doi:10.1016/j.media.2016.06.027

    authors: Suinesiaputra A,McCulloch AD,Nash MP,Pontre B,Young AA

    更新日期:2016-10-01 00:00:00

  • Symmetric positive semi-definite Cartesian Tensor fiber orientation distributions (CT-FOD).

    abstract::A novel method for estimating a field of fiber orientation distribution (FOD) based on signal de-convolution from a given set of diffusion weighted magnetic resonance (DW-MR) images is presented. We model the FOD by higher order Cartesian tensor basis using a parametrization that explicitly enforces the positive semi-...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2012.07.002

    authors: Weldeselassie YT,Barmpoutis A,Atkins MS

    更新日期:2012-08-01 00:00:00

  • Ultrasonic and elasticity imaging to model disease-induced changes in soft-tissue structure.

    abstract::Ultrasonic techniques are presented for the study of soft biological tissue structure and function. Changes in echo waveforms caused by microscopic variations in the mechanical properties of tissue can reveal disease mechanism, in vivo. On a larger scale, elasticity imaging describes the macroscopic mechanical propert...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(98)80014-5

    authors: Chaturvedi P,Insana MF,Hall TJ

    更新日期:1998-12-01 00:00:00

  • Dynamically constructed network with error correction for accurate ventricle volume estimation.

    abstract::Automated ventricle volume estimation (AVVE) on cardiac magnetic resonance (CMR) images is very important for clinical cardiac disease diagnosis. However, current AVVE methods ignore the error correction for the estimated volume. This results in clinically intolerable ventricle volume estimation error and further lead...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101723

    authors: Luo G,Wang W,Tam C,Wang K,Cao S,Zhang H,Chen B,Li S

    更新日期:2020-08-01 00:00:00

  • Improved fidelity of brain microstructure mapping from single-shell diffusion MRI.

    abstract::Diffusion weighted imaging (DWI) is sensitive to alterations in the diffusion of water molecules caused by microstructural barriers. Different microstructural compartments are characterized by differences in DWI signal. Diffusion tensor imaging conflates the signal from these compartments into a single tensor, which p...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.10.004

    authors: Taquet M,Scherrer B,Boumal N,Peters JM,Macq B,Warfield SK

    更新日期:2015-12-01 00:00:00

  • Noise reduction in diffusion MRI using non-local self-similar information in joint x-q space.

    abstract::Diffusion MRI affords valuable insights into white matter microstructures, but suffers from low signal-to-noise ratio (SNR), especially at high diffusion weighting (i.e., b-value). To avoid time-intensive repeated acquisition, post-processing algorithms are often used to reduce noise. Among existing methods, non-local...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.01.006

    authors: Chen G,Wu Y,Shen D,Yap PT

    更新日期:2019-04-01 00:00:00

  • Accurate estimation of retinal vessel width using bagged decision trees and an extended multiresolution Hermite model.

    abstract::We present an algorithm estimating the width of retinal vessels in fundus camera images. The algorithm uses a novel parametric surface model of the cross-sectional intensities of vessels, and ensembles of bagged decision trees to estimate the local width from the parameters of the best-fit surface. We report comparati...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2013.07.006

    authors: Lupaşcu CA,Tegolo D,Trucco E

    更新日期:2013-12-01 00:00:00

  • BrainSuite: an automated cortical surface identification tool.

    abstract::We describe a new magnetic resonance (MR) image analysis tool that produces cortical surface representations with spherical topology from MR images of the human brain. The tool provides a sequence of low-level operations in a single package that can produce accurate brain segmentations in clinical time. The tools incl...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(02)00054-3

    authors: Shattuck DW,Leahy RM

    更新日期:2002-06-01 00:00:00

  • Automated age estimation from MRI volumes of the hand.

    abstract::Highly relevant for both clinical and legal medicine applications, the established radiological methods for estimating unknown age in children and adolescents are based on visual examination of bone ossification in X-ray images of the hand. Our group has initiated the development of fully automatic age estimation meth...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101538

    authors: Štern D,Payer C,Urschler M

    更新日期:2019-12-01 00:00:00

  • Automated preoperative planning of femoral stem in total hip arthroplasty from 3D CT data: atlas-based approach and comparative study.

    abstract::Atlas-based methods for automated preoperative planning of the femoral stem implant in total hip arthroplasty are described. Statistical atlases are constructed from a number of past preoperative plans prepared by experienced surgeons in order to represent the surgeon's expertise of the planning. Two types of atlases ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.10.005

    authors: Otomaru I,Nakamoto M,Kagiyama Y,Takao M,Sugano N,Tomiyama N,Tada Y,Sato Y

    更新日期:2012-02-01 00:00:00

  • Directional wavelet based features for colonic polyp classification.

    abstract::In this work, various wavelet based methods like the discrete wavelet transform, the dual-tree complex wavelet transform, the Gabor wavelet transform, curvelets, contourlets and shearlets are applied for the automated classification of colonic polyps. The methods are tested on 8 HD-endoscopic image databases, where ea...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2016.02.001

    authors: Wimmer G,Tamaki T,Tischendorf JJ,Häfner M,Yoshida S,Tanaka S,Uhl A

    更新日期:2016-07-01 00:00:00