A work flow to build and validate patient specific left atrium electrophysiology models from catheter measurements.

Abstract:

:Biophysical models of the atrium provide a physically constrained framework for describing the current state of an atrium and allow predictions of how that atrium will respond to therapy. We propose a work flow to simulate patient specific electrophysiological heterogeneity from clinical data and validate the resulting biophysical models. In 7 patients, we recorded the atrial anatomy with an electroanatomical mapping system (St Jude Velocity); we then applied an S1-S2 electrical stimulation protocol from the coronary sinus (CS) and the high right atrium (HRA) whilst recording the activation patterns using a PentaRay catheter with 10 bipolar electrodes at 12 ± 2 sites across the atrium. Using only the activation times measured with a PentaRay catheter and caused by a stimulus applied in the CS with a remote catheter we fitted the four parameters for a modified Mitchell-Schaeffer model and the tissue conductivity to the recorded local conduction velocity restitution curve and estimated local effective refractory period. Model parameters were then interpolated across each atrium. The fitted model recapitulated the S1-S2 activation times for CS pacing giving a correlation ranging between 0.81 and 0.98. The model was validated by comparing simulated activations times with the independently recorded HRA pacing S1-S2 activation times, giving a correlation ranging between 0.65 and 0.96. The resulting work flow provides the first validated cohort of models that capture clinically measured patient specific electrophysiological heterogeneity.

journal_name

Med Image Anal

journal_title

Medical image analysis

authors

Corrado C,Williams S,Karim R,Plank G,O'Neill M,Niederer S

doi

10.1016/j.media.2018.04.005

subject

Has Abstract

pub_date

2018-07-01 00:00:00

pages

153-163

eissn

1361-8415

issn

1361-8423

pii

S1361-8415(18)30207-X

journal_volume

47

pub_type

杂志文章
  • Symmetric positive semi-definite Cartesian Tensor fiber orientation distributions (CT-FOD).

    abstract::A novel method for estimating a field of fiber orientation distribution (FOD) based on signal de-convolution from a given set of diffusion weighted magnetic resonance (DW-MR) images is presented. We model the FOD by higher order Cartesian tensor basis using a parametrization that explicitly enforces the positive semi-...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2012.07.002

    authors: Weldeselassie YT,Barmpoutis A,Atkins MS

    更新日期:2012-08-01 00:00:00

  • Disentangled representation learning in cardiac image analysis.

    abstract::Typically, a medical image offers spatial information on the anatomy (and pathology) modulated by imaging specific characteristics. Many imaging modalities including Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) can be interpreted in this way. We can venture further and consider that a medical image na...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101535

    authors: Chartsias A,Joyce T,Papanastasiou G,Semple S,Williams M,Newby DE,Dharmakumar R,Tsaftaris SA

    更新日期:2019-12-01 00:00:00

  • Directional wavelet based features for colonic polyp classification.

    abstract::In this work, various wavelet based methods like the discrete wavelet transform, the dual-tree complex wavelet transform, the Gabor wavelet transform, curvelets, contourlets and shearlets are applied for the automated classification of colonic polyps. The methods are tested on 8 HD-endoscopic image databases, where ea...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2016.02.001

    authors: Wimmer G,Tamaki T,Tischendorf JJ,Häfner M,Yoshida S,Tanaka S,Uhl A

    更新日期:2016-07-01 00:00:00

  • Major depressive disorder identification by referenced multiset canonical correlation analysis with clinical scores.

    abstract::A novel method based on multiset canonical correlation analysis (mCCA) and linear discriminant analysis (LDA) is presented to identify the major depressive disorder (MDD). The new method comprises two parts, namely, the mCCA-rreg and sparse LDA models. The mCCA-rreg model extends the classical canonical correlation mo...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101600

    authors: Lin W,Lv D,Han Z,Dong J,Yang L

    更新日期:2020-02-01 00:00:00

  • Improvement of fully automated airway segmentation on volumetric computed tomographic images using a 2.5 dimensional convolutional neural net.

    abstract::We propose a novel airway segmentation method in volumetric chest computed tomography (CT) and evaluate its performance on multiple datasets. The segmentation is performed voxel-by-voxel by a 2.5D convolutional neural net (2.5D CNN) trained in a supervised manner. To enhance the accuracy of the segmented airway tree, ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.10.006

    authors: Yun J,Park J,Yu D,Yi J,Lee M,Park HJ,Lee JG,Seo JB,Kim N

    更新日期:2019-01-01 00:00:00

  • Hierarchical max-flow segmentation framework for multi-atlas segmentation with Kohonen self-organizing map based Gaussian mixture modeling.

    abstract::The incorporation of intensity, spatial, and topological information into large-scale multi-region segmentation has been a topic of ongoing research in medical image analysis. Multi-region segmentation problems, such as segmentation of brain structures, pose unique challenges in image segmentation in which regions may...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.05.005

    authors: Rajchl M,Baxter JS,McLeod AJ,Yuan J,Qiu W,Peters TM,Khan AR

    更新日期:2016-01-01 00:00:00

  • Multi-modal volume registration by maximization of mutual information.

    abstract::A new information-theoretic approach is presented for finding the registration of volumetric medical images of differing modalities. Registration is achieved by adjustment of the relative position and orientation until the mutual information between the images is maximized. In our derivation of the registration proced...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(01)80004-9

    authors: Wells WM 3rd,Viola P,Atsumi H,Nakajima S,Kikinis R

    更新日期:1996-03-01 00:00:00

  • Identifying Cross-individual Correspondences of 3-hinge Gyri.

    abstract::Human brain alignment based on imaging data has long been an intriguing research topic. One of the challenges is the huge inter-individual variabilities, which are pronounced not only in cortical folding patterns, but also in the underlying structural and functional patterns. Also, it is still not fully understood how...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101700

    authors: Zhang T,Huang Y,Zhao L,He Z,Jiang X,Guo L,Hu X,Liu T

    更新日期:2020-07-01 00:00:00

  • Manifold modeling for brain population analysis.

    abstract::This paper describes a method for building efficient representations of large sets of brain images. Our hypothesis is that the space spanned by a set of brain images can be captured, to a close approximation, by a low-dimensional, nonlinear manifold. This paper presents a method to learn such a low-dimensional manifol...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2010.05.008

    authors: Gerber S,Tasdizen T,Thomas Fletcher P,Joshi S,Whitaker R,Alzheimers Disease Neuroimaging Initiative (ADNI).

    更新日期:2010-10-01 00:00:00

  • Self-similarity weighted mutual information: a new nonrigid image registration metric.

    abstract::Mutual information (MI) has been widely used as a similarity measure for rigid registration of multi-modal and uni-modal medical images. However, robust application of MI to deformable registration is challenging mainly because rich structural information, which are critical cues for successful deformable registration...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2013.12.003

    authors: Rivaz H,Karimaghaloo Z,Collins DL

    更新日期:2014-02-01 00:00:00

  • Gaussianization of Diffusion MRI Data Using Spatially Adaptive Filtering.

    abstract::Diffusion MRI magnitude data, typically Rician or noncentral χ distributed, is affected by the noise floor, which falsely elevates signal, reduces image contrast, and biases estimation of diffusion parameters. Noise floor can be avoided by extracting real-valued Gaussian-distributed data from complex diffusion-weighte...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101828

    authors: Liu F,Feng J,Chen G,Shen D,Yap PT

    更新日期:2021-02-01 00:00:00

  • PCA-based groupwise image registration for quantitative MRI.

    abstract::Quantitative magnetic resonance imaging (qMRI) is a technique for estimating quantitative tissue properties, such as the T1 and T2 relaxation times, apparent diffusion coefficient (ADC), and various perfusion measures. This estimation is achieved by acquiring multiple images with different acquisition parameters (or a...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.12.004

    authors: Huizinga W,Poot DH,Guyader JM,Klaassen R,Coolen BF,van Kranenburg M,van Geuns RJ,Uitterdijk A,Polfliet M,Vandemeulebroucke J,Leemans A,Niessen WJ,Klein S

    更新日期:2016-04-01 00:00:00

  • Sequential conditional reinforcement learning for simultaneous vertebral body detection and segmentation with modeling the spine anatomy.

    abstract::Accurate vertebral body (VB) detection and segmentation are critical for spine disease identification and diagnosis. Existing automatic VB detection and segmentation methods may cause false-positive results to the background tissue or inaccurate results to the desirable VB. Because they usually cannot take both the gl...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101861

    authors: Zhang D,Chen B,Li S

    更新日期:2021-01-01 00:00:00

  • Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm.

    abstract::In this paper an automatic atlas-based segmentation algorithm for 4D cardiac MR images is proposed. The algorithm is based on the 4D extension of the expectation maximisation (EM) algorithm. The EM algorithm uses a 4D probabilistic cardiac atlas to estimate the initial model parameters and to integrate a priori inform...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2004.06.005

    authors: Lorenzo-Valdés M,Sanchez-Ortiz GI,Elkington AG,Mohiaddin RH,Rueckert D

    更新日期:2004-09-01 00:00:00

  • Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian-Eulerian PDE approach using partial volume maps.

    abstract::Accurate cortical thickness estimation is important for the study of many neurodegenerative diseases. Many approaches have been previously proposed, which can be broadly categorised as mesh-based and voxel-based. While the mesh-based approaches can potentially achieve subvoxel resolution, they usually lack the computa...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2009.07.003

    authors: Acosta O,Bourgeat P,Zuluaga MA,Fripp J,Salvado O,Ourselin S,Alzheimer's Disease Neuroimaging Initiative.

    更新日期:2009-10-01 00:00:00

  • Characterization of task-free and task-performance brain states via functional connectome patterns.

    abstract::Both resting state fMRI (R-fMRI) and task-based fMRI (T-fMRI) have been widely used to study the functional activities of the human brain during task-free and task-performance periods, respectively. However, due to the difficulty in strictly controlling the participating subject's mental status and their cognitive beh...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2013.07.003

    authors: Zhang X,Guo L,Li X,Zhang T,Zhu D,Li K,Chen H,Lv J,Jin C,Zhao Q,Li L,Liu T

    更新日期:2013-12-01 00:00:00

  • Quantitative analysis of retinal OCT.

    abstract::Clinical acceptance of 3-D OCT retinal imaging brought rapid development of quantitative 3-D analysis of retinal layers, vasculature, retinal lesions as well as facilitated new research in retinal diseases. One of the cornerstones of many such analyses is segmentation and thickness quantification of retinal layers and...

    journal_title:Medical image analysis

    pub_type: 社论

    doi:10.1016/j.media.2016.06.001

    authors: Sonka M,Abràmoff MD

    更新日期:2016-10-01 00:00:00

  • A variational framework for integrating segmentation and registration through active contours.

    abstract::Traditionally, segmentation and registration have been solved as two independent problems, even though it is often the case that the solution to one impacts the solution to the other. In this paper, we introduce a geometric, variational framework that uses active contours to simultaneously segment and register feature...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(03)00004-5

    authors: Yezzi A,Zöllei L,Kapur T

    更新日期:2003-06-01 00:00:00

  • Dynamic MRI reconstruction with end-to-end motion-guided network.

    abstract::Temporal correlation in dynamic magnetic resonance imaging (MRI), such as cardiac MRI, is informative and important to understand motion mechanisms of body regions. Modeling such information into the MRI reconstruction process produces temporally coherent image sequence and reduces imaging artifacts and blurring. Howe...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101901

    authors: Huang Q,Xian Y,Yang D,Qu H,Yi J,Wu P,Metaxas DN

    更新日期:2021-02-01 00:00:00

  • Context specific descriptors for tracking deforming tissue.

    abstract::In minimally invasive surgery, deployment of motion compensation, dynamic active constraints and adaptive intra-operative guidance require accurate estimation of deforming tissue in 3D. To this end, the use of vision-based techniques is advantageous in that it does not require the integration of additional hardware to...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.02.010

    authors: Mountney P,Yang GZ

    更新日期:2012-04-01 00:00:00

  • An image space approach to Cartesian based parallel MR imaging with total variation regularization.

    abstract::The Cartesian parallel magnetic imaging problem is formulated variationally using a high-order penalty for coil sensitivities and a total variation like penalty for the reconstructed image. Then the optimality system is derived and numerically discretized. The objective function used is non-convex, but it possesses a ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.07.002

    authors: Keeling SL,Clason C,Hintermüller M,Knoll F,Laurain A,von Winckel G

    更新日期:2012-01-01 00:00:00

  • Equilibrated warping: Finite element image registration with finite strain equilibrium gap regularization.

    abstract::In this paper, we propose a novel continuum finite strain formulation of the equilibrium gap regularization for image registration. The equilibrium gap regularization essentially penalizes any deviation from the solution of a hyperelastic body in equilibrium with arbitrary loads prescribed at the boundary. It thus rep...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.07.007

    authors: Genet M,Stoeck CT,von Deuster C,Lee LC,Kozerke S

    更新日期:2018-12-01 00:00:00

  • Hierarchical performance estimation in the statistical label fusion framework.

    abstract::Label fusion is a critical step in many image segmentation frameworks (e.g., multi-atlas segmentation) as it provides a mechanism for generalizing a collection of labeled examples into a single estimate of the underlying segmentation. In the multi-label case, typical label fusion algorithms treat all labels equally - ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.06.005

    authors: Asman AJ,Landman BA

    更新日期:2014-10-01 00:00:00

  • Multi-task exclusive relationship learning for alzheimer's disease progression prediction with longitudinal data.

    abstract::Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive impairment of memory and other cognitive functions. Currently, many multi-task learning approaches have been proposed to predict the disease progression at the early stage using longitudinal data, with each task corresponding to a pa...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.01.007

    authors: Wang M,Zhang D,Shen D,Liu M

    更新日期:2019-04-01 00:00:00

  • Noise reduction in diffusion MRI using non-local self-similar information in joint x-q space.

    abstract::Diffusion MRI affords valuable insights into white matter microstructures, but suffers from low signal-to-noise ratio (SNR), especially at high diffusion weighting (i.e., b-value). To avoid time-intensive repeated acquisition, post-processing algorithms are often used to reduce noise. Among existing methods, non-local...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.01.006

    authors: Chen G,Wu Y,Shen D,Yap PT

    更新日期:2019-04-01 00:00:00

  • Hierarchical spherical deformation for cortical surface registration.

    abstract::We present hierarchical spherical deformation for a group-wise shape correspondence to address template selection bias and to minimize registration distortion. In this work, we aim at a continuous and smooth deformation field to guide accurate cortical surface registration. In conventional spherical registration metho...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.06.013

    authors: Lyu I,Kang H,Woodward ND,Styner MA,Landman BA

    更新日期:2019-10-01 00:00:00

  • An improved deep network for tissue microstructure estimation with uncertainty quantification.

    abstract::Deep learning based methods have improved the estimation of tissue microstructure from diffusion magnetic resonance imaging (dMRI) scans acquired with a reduced number of diffusion gradients. These methods learn the mapping from diffusion signals in a voxel or patch to tissue microstructure measures. In particular, it...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101650

    authors: Ye C,Li Y,Zeng X

    更新日期:2020-04-01 00:00:00

  • A deep network for tissue microstructure estimation using modified LSTM units.

    abstract::Diffusion magnetic resonance imaging (dMRI) offers a unique tool for noninvasively assessing tissue microstructure. However, accurate estimation of tissue microstructure described by complicated signal models can be challenging when a reduced number of diffusion gradients are used. Deep learning based microstructure e...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.04.006

    authors: Ye C,Li X,Chen J

    更新日期:2019-07-01 00:00:00

  • Respiratory motion models: a review.

    abstract::The problem of respiratory motion has proved a serious obstacle in developing techniques to acquire images or guide interventions in abdominal and thoracic organs. Motion models offer a possible solution to these problems, and as a result the field of respiratory motion modelling has become an active one over the past...

    journal_title:Medical image analysis

    pub_type: 杂志文章,评审

    doi:10.1016/j.media.2012.09.005

    authors: McClelland JR,Hawkes DJ,Schaeffter T,King AP

    更新日期:2013-01-01 00:00:00

  • Incomplete multi-modal representation learning for Alzheimer's disease diagnosis.

    abstract::Alzheimers disease (AD) is a complex neurodegenerative disease. Its early diagnosis and treatment have been a major concern of researchers. Currently, the multi-modality data representation learning of this disease is gradually becoming an emerging research field, attracting widespread attention. However, in practice,...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101953

    authors: Liu Y,Fan L,Zhang C,Zhou T,Xiao Z,Geng L,Shen D

    更新日期:2021-01-01 00:00:00