Disentangled representation learning in cardiac image analysis.


:Typically, a medical image offers spatial information on the anatomy (and pathology) modulated by imaging specific characteristics. Many imaging modalities including Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) can be interpreted in this way. We can venture further and consider that a medical image naturally factors into some spatial factors depicting anatomy and factors that denote the imaging characteristics. Here, we explicitly learn this decomposed (disentangled) representation of imaging data, focusing in particular on cardiac images. We propose Spatial Decomposition Network (SDNet), which factorises 2D medical images into spatial anatomical factors and non-spatial modality factors. We demonstrate that this high-level representation is ideally suited for several medical image analysis tasks, such as semi-supervised segmentation, multi-task segmentation and regression, and image-to-image synthesis. Specifically, we show that our model can match the performance of fully supervised segmentation models, using only a fraction of the labelled images. Critically, we show that our factorised representation also benefits from supervision obtained either when we use auxiliary tasks to train the model in a multi-task setting (e.g. regressing to known cardiac indices), or when aggregating multimodal data from different sources (e.g. pooling together MRI and CT data). To explore the properties of the learned factorisation, we perform latent-space arithmetic and show that we can synthesise CT from MR and vice versa, by swapping the modality factors. We also demonstrate that the factor holding image specific information can be used to predict the input modality with high accuracy. Code will be made available at https://github.com/agis85/anatomy_modality_decomposition.


Med Image Anal


Medical image analysis


Chartsias A,Joyce T,Papanastasiou G,Semple S,Williams M,Newby DE,Dharmakumar R,Tsaftaris SA




Has Abstract


2019-12-01 00:00:00












  • Unsupervised boundary delineation of spinal neural foramina using a multi-feature and adaptive spectral segmentation.

    abstract::As a common disease in the elderly, neural foramina stenosis (NFS) brings a significantly negative impact on the quality of life due to its symptoms including pain, disability, fall risk and depression. Accurate boundary delineation is essential to the clinical diagnosis and treatment of NFS. However, existing clinica...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: He X,Zhang H,Landis M,Sharma M,Warrington J,Li S

    更新日期:2017-02-01 00:00:00

  • Coupled parametric model for estimation of visual field tests based on OCT macular thickness maps, and vice versa, in glaucoma care.

    abstract::The current standard of care for glaucoma patients consists of functional assessment of vision via visual field (VF) testing, which is sensitive but subjective, time-consuming, and often unreliable. A new imaging technology, Fourier domain optical coherence tomography (OCT), is being introduced to assess the structura...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: Tsai A,Caprioli J,Shen LQ

    更新日期:2012-01-01 00:00:00

  • SDAE-GAN: Enable high-dimensional pathological images in liver cancer survival prediction with a policy gradient based data augmentation method.

    abstract::High-dimensional pathological images produced by Immunohistochemistry (IHC) methods consist of many pathological indexes, which play critical roles in cancer treatment planning. However, these indexes currently cannot be utilized in survival prediction because joining them with patients' clinicopathological features (...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: Wu H,Gao R,Sheng YP,Chen B,Li S

    更新日期:2020-05-01 00:00:00

  • Directional wavelet based features for colonic polyp classification.

    abstract::In this work, various wavelet based methods like the discrete wavelet transform, the dual-tree complex wavelet transform, the Gabor wavelet transform, curvelets, contourlets and shearlets are applied for the automated classification of colonic polyps. The methods are tested on 8 HD-endoscopic image databases, where ea...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: Wimmer G,Tamaki T,Tischendorf JJ,Häfner M,Yoshida S,Tanaka S,Uhl A

    更新日期:2016-07-01 00:00:00

  • An accurate, fast and robust method to generate patient-specific cubic Hermite meshes.

    abstract::In-silico continuum simulations of organ and tissue scale physiology often require a discretisation or mesh of the solution domain. Cubic Hermite meshes provide a smooth representation of anatomy that is well-suited for simulating large deformation mechanics. Models of organ mechanics and deformation have demonstrated...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: Lamata P,Niederer S,Nordsletten D,Barber DC,Roy I,Hose DR,Smith N

    更新日期:2011-12-01 00:00:00

  • Evaluation of algorithms for Multi-Modality Whole Heart Segmentation: An open-access grand challenge.

    abstract::Knowledge of whole heart anatomy is a prerequisite for many clinical applications. Whole heart segmentation (WHS), which delineates substructures of the heart, can be very valuable for modeling and analysis of the anatomy and functions of the heart. However, automating this segmentation can be challenging due to the l...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: Zhuang X,Li L,Payer C,Štern D,Urschler M,Heinrich MP,Oster J,Wang C,Smedby Ö,Bian C,Yang X,Heng PA,Mortazi A,Bagci U,Yang G,Sun C,Galisot G,Ramel JY,Brouard T,Tong Q,Si W,Liao X,Zeng G,Shi Z,Zheng G,Wang

    更新日期:2019-12-01 00:00:00

  • Discriminative dictionary learning for abdominal multi-organ segmentation.

    abstract::An automated segmentation method is presented for multi-organ segmentation in abdominal CT images. Dictionary learning and sparse coding techniques are used in the proposed method to generate target specific priors for segmentation. The method simultaneously learns dictionaries which have reconstructive power and clas...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: Tong T,Wolz R,Wang Z,Gao Q,Misawa K,Fujiwara M,Mori K,Hajnal JV,Rueckert D

    更新日期:2015-07-01 00:00:00

  • Robust estimation of carotid artery wall motion using the elasticity-based state-space approach.

    abstract::The dynamics of the carotid artery wall has been recognized as a valuable indicator to evaluate the status of atherosclerotic disease in the preclinical stage. However, it is still a challenge to accurately measure this dynamics from ultrasound images. This paper aims at developing an elasticity-based state-space appr...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: Gao Z,Xiong H,Liu X,Zhang H,Ghista D,Wu W,Li S

    更新日期:2017-04-01 00:00:00

  • Segmentation of carpal bones from CT images using skeletally coupled deformable models.

    abstract::The in vivo investigation of joint kinematics in normal and injured wrist requires the segmentation of carpal bones from 3D (CT) images, and their registration over time. The non-uniformity of bone tissue, ranging from dense cortical bone to textured spongy bone, the irregular shape of closely packed carpal bones, sma...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: Sebastian TB,Tek H,Crisco JJ,Kimia BB

    更新日期:2003-03-01 00:00:00

  • Intensity inhomogeneity correction of SD-OCT data using macular flatspace.

    abstract::Images of the retina acquired using optical coherence tomography (OCT) often suffer from intensity inhomogeneity problems that degrade both the quality of the images and the performance of automated algorithms utilized to measure structural changes. This intensity variation has many causes, including off-axis acquisit...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: Lang A,Carass A,Jedynak BM,Solomon SD,Calabresi PA,Prince JL

    更新日期:2018-01-01 00:00:00

  • Neighborhood resolved fiber orientation distributions (NRFOD) in automatic labeling of white matter fiber pathways.

    abstract::Accurate digital representation of major white matter bundles in the brain is an important goal in neuroscience image computing since the representations can be used for surgical planning, intra-patient longitudinal analysis and inter-subject population connectivity studies. Reconstructing desired fiber bundles genera...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: Ugurlu D,Firat Z,Türe U,Unal G

    更新日期:2018-05-01 00:00:00

  • Robust registration procedures for endoscopic imaging.

    abstract::This paper presents a robust algorithm for calibration and system registration of endoscopic imaging devices. The system registration allows us to map accurately each point in the world coordinate system into the endoscope image and vice versa to obtain the world line of sight for each image pixel. The key point of ou...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: Konen W,Tombrock S,Scholz M

    更新日期:2007-12-01 00:00:00

  • Hierarchical max-flow segmentation framework for multi-atlas segmentation with Kohonen self-organizing map based Gaussian mixture modeling.

    abstract::The incorporation of intensity, spatial, and topological information into large-scale multi-region segmentation has been a topic of ongoing research in medical image analysis. Multi-region segmentation problems, such as segmentation of brain structures, pose unique challenges in image segmentation in which regions may...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: Rajchl M,Baxter JS,McLeod AJ,Yuan J,Qiu W,Peters TM,Khan AR

    更新日期:2016-01-01 00:00:00

  • Nonlinear multiscale regularisation in MR elastography: Towards fine feature mapping.

    abstract::Fine-featured elastograms may provide additional information of radiological interest in the context of in vivo elastography. Here a new image processing pipeline called ESP (Elastography Software Pipeline) is developed to create Magnetic Resonance Elastography (MRE) maps of viscoelastic parameters (complex modulus ma...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: Barnhill E,Hollis L,Sack I,Braun J,Hoskins PR,Pankaj P,Brown C,van Beek EJR,Roberts N

    更新日期:2017-01-01 00:00:00

  • Intensity non-uniformity correction in MRI: existing methods and their validation.

    abstract::Magnetic resonance imaging is a popular and powerful non-invasive imaging technique. Automated analysis has become mandatory to efficiently cope with the large amount of data generated using this modality. However, several artifacts, such as intensity non-uniformity, can degrade the quality of acquired data. Intensity...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: Belaroussi B,Milles J,Carme S,Zhu YM,Benoit-Cattin H

    更新日期:2006-04-01 00:00:00

  • Image guidance in orthopaedics and traumatology: A historical perspective.

    abstract::In this note we summarize the history of computer aided surgery in orthopaedics and traumatology from the end of the nineteenth century to currently observable future trends. We concentrate on the two major components of such systems, pre-operative planning and intra-operative execution. The evolution of the necessary...

    journal_title:Medical image analysis

    pub_type: 社论


    authors: Székely G,Nolte LP

    更新日期:2016-10-01 00:00:00

  • Fusion of white and gray matter geometry: a framework for investigating brain development.

    abstract::Current neuroimaging investigation of the white matter typically focuses on measurements derived from diffusion tensor imaging, such as fractional anisotropy (FA). In contrast, imaging studies of the gray matter oftentimes focus on morphological features such as cortical thickness, folding and surface curvature. As a ...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: Savadjiev P,Rathi Y,Bouix S,Smith AR,Schultz RT,Verma R,Westin CF

    更新日期:2014-12-01 00:00:00

  • A variational framework for integrating segmentation and registration through active contours.

    abstract::Traditionally, segmentation and registration have been solved as two independent problems, even though it is often the case that the solution to one impacts the solution to the other. In this paper, we introduce a geometric, variational framework that uses active contours to simultaneously segment and register feature...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: Yezzi A,Zöllei L,Kapur T

    更新日期:2003-06-01 00:00:00

  • A computational diffusion MRI and parametric dictionary learning framework for modeling the diffusion signal and its features.

    abstract::In this work, we first propose an original and efficient computational framework to model continuous diffusion MRI (dMRI) signals and analytically recover important diffusion features such as the Ensemble Average Propagator (EAP) and the Orientation Distribution Function (ODF). Then, we develop an efficient parametric...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: Merlet S,Caruyer E,Ghosh A,Deriche R

    更新日期:2013-10-01 00:00:00

  • Discriminant snakes for 3D reconstruction of anatomical organs.

    abstract::In this work a new statistic deformable model for 3D segmentation of anatomical organs in medical images is proposed. A statistic discriminant snake performs a supervised learning of the object boundary in an image slice to segment the next slice of the image sequence. Each part of the object boundary is projected in ...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: Pardo XM,Radeva P,Cabello D

    更新日期:2003-09-01 00:00:00

  • Explainable cardiac pathology classification on cine MRI with motion characterization by semi-supervised learning of apparent flow.

    abstract::We propose a method to classify cardiac pathology based on a novel approach to extract image derived features to characterize the shape and motion of the heart. An original semi-supervised learning procedure, which makes efficient use of a large amount of non-segmented images and a small amount of images segmented man...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: Zheng Q,Delingette H,Ayache N

    更新日期:2019-08-01 00:00:00

  • Statistical shape model of atria, ventricles and epicardium from short- and long-axis MR images.

    abstract::We describe a new 3-D statistical shape model of the heart consisting of atria, ventricles and epicardium. The model was constructed by combining information on standard short- and long-axis cardiac MR images. In the model, the variability of the shape was modeled with PCA- and ICA-based shape models as well as with n...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: Lötjönen J,Kivistö S,Koikkalainen J,Smutek D,Lauerma K

    更新日期:2004-09-01 00:00:00

  • Classification of hemodynamics from dynamic-susceptibility-contrast magnetic resonance (DSC-MR) brain images using noiseless independent factor analysis.

    abstract::Dynamic-susceptibility-contrast (DSC) magnetic resonance imaging records signal changes on images when the injected contrast-agent particles pass through a human brain. The temporal signal changes on different brain tissues manifest distinct blood-supply patterns which are vital for the profound analysis of cerebral h...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: Chou YC,Teng MM,Guo WY,Hsieh JC,Wu YT

    更新日期:2007-06-01 00:00:00

  • Comparison of atlas-based techniques for whole-body bone segmentation.

    abstract::We evaluate the accuracy of whole-body bone extraction from whole-body MR images using a number of atlas-based segmentation methods. The motivation behind this work is to find the most promising approach for the purpose of MRI-guided derivation of PET attenuation maps in whole-body PET/MRI. To this end, a variety of a...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: Arabi H,Zaidi H

    更新日期:2017-02-01 00:00:00

  • Automated localization of breast cancer in DCE-MRI.

    abstract::Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is increasingly being used for the detection and diagnosis of breast cancer. Compared to mammography, DCE-MRI provides higher sensitivity, however its specificity is variable. Moreover, DCE-MRI data analysis is time consuming and depends on reader expertis...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: Gubern-Mérida A,Martí R,Melendez J,Hauth JL,Mann RM,Karssemeijer N,Platel B

    更新日期:2015-02-01 00:00:00

  • Improved fidelity of brain microstructure mapping from single-shell diffusion MRI.

    abstract::Diffusion weighted imaging (DWI) is sensitive to alterations in the diffusion of water molecules caused by microstructural barriers. Different microstructural compartments are characterized by differences in DWI signal. Diffusion tensor imaging conflates the signal from these compartments into a single tensor, which p...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: Taquet M,Scherrer B,Boumal N,Peters JM,Macq B,Warfield SK

    更新日期:2015-12-01 00:00:00

  • An image space approach to Cartesian based parallel MR imaging with total variation regularization.

    abstract::The Cartesian parallel magnetic imaging problem is formulated variationally using a high-order penalty for coil sensitivities and a total variation like penalty for the reconstructed image. Then the optimality system is derived and numerically discretized. The objective function used is non-convex, but it possesses a ...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: Keeling SL,Clason C,Hintermüller M,Knoll F,Laurain A,von Winckel G

    更新日期:2012-01-01 00:00:00

  • Automatic segmentation of 3D micro-CT coronary vascular images.

    abstract::Although there are many algorithms available in the literature aimed at segmentation and model reconstruction of 3D angiographic images, many are focused on characterizing only a part of the vascular network. This study is motivated by the recent emerging prospects of whole-organ simulations in coronary hemodynamics, ...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: Lee J,Beighley P,Ritman E,Smith N

    更新日期:2007-12-01 00:00:00

  • CHAOS Challenge - combined (CT-MR) healthy abdominal organ segmentation.

    abstract::Segmentation of abdominal organs has been a comprehensive, yet unresolved, research field for many years. In the last decade, intensive developments in deep learning (DL) introduced new state-of-the-art segmentation systems. Despite outperforming the overall accuracy of existing systems, the effects of DL model proper...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: Kavur AE,Gezer NS,Barış M,Aslan S,Conze PH,Groza V,Pham DD,Chatterjee S,Ernst P,Özkan S,Baydar B,Lachinov D,Han S,Pauli J,Isensee F,Perkonigg M,Sathish R,Rajan R,Sheet D,Dovletov G,Speck O,Nürnberger A,Maier-H

    更新日期:2020-12-25 00:00:00

  • Global localization of 3D anatomical structures by pre-filtered Hough forests and discrete optimization.

    abstract::The accurate localization of anatomical landmarks is a challenging task, often solved by domain specific approaches. We propose a method for the automatic localization of landmarks in complex, repetitive anatomical structures. The key idea is to combine three steps: (1) a classifier for pre-filtering anatomical landma...

    journal_title:Medical image analysis

    pub_type: 杂志文章


    authors: Donner R,Menze BH,Bischof H,Langs G

    更新日期:2013-12-01 00:00:00