Cardiac function estimation from MRI using a heart model and data assimilation: advances and difficulties.

Abstract:

:In this paper, we present a framework to estimate local ventricular myocardium contractility using clinical MRI, a heart model and data assimilation. First, we build a generic anatomical model of the ventricles including muscle fibre orientations and anatomical subdivisions. Then, this model is deformed to fit a clinical MRI, using a semi-automatic fuzzy segmentation, an affine registration method and a local deformable biomechanical model. An electromechanical model of the heart is then presented and simulated. Finally, a data assimilation procedure is described, and applied to this model. Data assimilation makes it possible to estimate local contractility from given displacements. Presented results on fitting to patient-specific anatomy and assimilation with simulated data are very promising. Current work on model calibration and estimation of patient parameters opens up possibilities to apply this framework in a clinical environment.

journal_name

Med Image Anal

journal_title

Medical image analysis

authors

Sermesant M,Moireau P,Camara O,Sainte-Marie J,Andriantsimiavona R,Cimrman R,Hill DL,Chapelle D,Razavi R

doi

10.1016/j.media.2006.04.002

subject

Has Abstract

pub_date

2006-08-01 00:00:00

pages

642-56

issue

4

eissn

1361-8415

issn

1361-8423

pii

S1361-8415(06)00031-4

journal_volume

10

pub_type

杂志文章
  • Equilibrated warping: Finite element image registration with finite strain equilibrium gap regularization.

    abstract::In this paper, we propose a novel continuum finite strain formulation of the equilibrium gap regularization for image registration. The equilibrium gap regularization essentially penalizes any deviation from the solution of a hyperelastic body in equilibrium with arbitrary loads prescribed at the boundary. It thus rep...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.07.007

    authors: Genet M,Stoeck CT,von Deuster C,Lee LC,Kozerke S

    更新日期:2018-12-01 00:00:00

  • Fusion of white and gray matter geometry: a framework for investigating brain development.

    abstract::Current neuroimaging investigation of the white matter typically focuses on measurements derived from diffusion tensor imaging, such as fractional anisotropy (FA). In contrast, imaging studies of the gray matter oftentimes focus on morphological features such as cortical thickness, folding and surface curvature. As a ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.06.013

    authors: Savadjiev P,Rathi Y,Bouix S,Smith AR,Schultz RT,Verma R,Westin CF

    更新日期:2014-12-01 00:00:00

  • Segmentation of the visible human for high-quality volume-based visualization.

    abstract::This article describes a combination of interactive classification and super-sampling visualization algorithms that greatly enhances the realism of 3-D reconstructions of the Visible Human data sets. Objects are classified on the basis of ellipsoidal regions in RGB space. The ellipsoids are used for super-sampling in ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(97)85001-3

    authors: Schiemann T,Tiede U,Höhne KH

    更新日期:1997-09-01 00:00:00

  • Multiple instance learning for classification of dementia in brain MRI.

    abstract::Machine learning techniques have been widely used to detect morphological abnormalities from structural brain magnetic resonance imaging data and to support the diagnosis of neurological diseases such as dementia. In this paper, we propose to use a multiple instance learning (MIL) method in an application for the dete...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.04.006

    authors: Tong T,Wolz R,Gao Q,Guerrero R,Hajnal JV,Rueckert D,Alzheimer’s Disease Neuroimaging Initiative.

    更新日期:2014-07-01 00:00:00

  • Deformable organisms for automatic medical image analysis.

    abstract::We introduce a new approach to medical image analysis that combines deformable model methodologies with concepts from the field of artificial life. In particular, we propose "deformable organisms", autonomous agents whose task is the automatic segmentation, labeling, and quantitative analysis of anatomical structures ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(02)00083-x

    authors: McInerney T,Hamarneh G,Shenton M,Terzopoulos D

    更新日期:2002-09-01 00:00:00

  • RMDL: Recalibrated multi-instance deep learning for whole slide gastric image classification.

    abstract::The whole slide histopathology images (WSIs) play a critical role in gastric cancer diagnosis. However, due to the large scale of WSIs and various sizes of the abnormal area, how to select informative regions and analyze them are quite challenging during the automatic diagnosis process. The multi-instance learning bas...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101549

    authors: Wang S,Zhu Y,Yu L,Chen H,Lin H,Wan X,Fan X,Heng PA

    更新日期:2019-12-01 00:00:00

  • Spine detection in CT and MR using iterated marginal space learning.

    abstract::Examinations of the spinal column with both, Magnetic Resonance (MR) imaging and Computed Tomography (CT), often require a precise three-dimensional positioning, angulation and labeling of the spinal disks and the vertebrae. A fully automatic and robust approach is a prerequisite for an automated scan alignment as wel...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2012.09.007

    authors: Michael Kelm B,Wels M,Kevin Zhou S,Seifert S,Suehling M,Zheng Y,Comaniciu D

    更新日期:2013-12-01 00:00:00

  • Large deformation diffeomorphic registration of diffusion-weighted imaging data.

    abstract::Registration plays an important role in group analysis of diffusion-weighted imaging (DWI) data. It can be used to build a reference anatomy for investigating structural variation or tracking changes in white matter. Unlike traditional scalar image registration where spatial alignment is the only focus, registration o...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.06.012

    authors: Zhang P,Niethammer M,Shen D,Yap PT

    更新日期:2014-12-01 00:00:00

  • Hierarchical max-flow segmentation framework for multi-atlas segmentation with Kohonen self-organizing map based Gaussian mixture modeling.

    abstract::The incorporation of intensity, spatial, and topological information into large-scale multi-region segmentation has been a topic of ongoing research in medical image analysis. Multi-region segmentation problems, such as segmentation of brain structures, pose unique challenges in image segmentation in which regions may...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.05.005

    authors: Rajchl M,Baxter JS,McLeod AJ,Yuan J,Qiu W,Peters TM,Khan AR

    更新日期:2016-01-01 00:00:00

  • Understanding the phase contrast optics to restore artifact-free microscopy images for segmentation.

    abstract::Phase contrast, a noninvasive microscopy imaging technique, is widely used to capture time-lapse images to monitor the behavior of transparent cells without staining or altering them. Due to the optical principle, phase contrast microscopy images contain artifacts such as the halo and shade-off that hinder image segme...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.12.006

    authors: Yin Z,Kanade T,Chen M

    更新日期:2012-07-01 00:00:00

  • PCA-based groupwise image registration for quantitative MRI.

    abstract::Quantitative magnetic resonance imaging (qMRI) is a technique for estimating quantitative tissue properties, such as the T1 and T2 relaxation times, apparent diffusion coefficient (ADC), and various perfusion measures. This estimation is achieved by acquiring multiple images with different acquisition parameters (or a...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.12.004

    authors: Huizinga W,Poot DH,Guyader JM,Klaassen R,Coolen BF,van Kranenburg M,van Geuns RJ,Uitterdijk A,Polfliet M,Vandemeulebroucke J,Leemans A,Niessen WJ,Klein S

    更新日期:2016-04-01 00:00:00

  • Segmentation of carpal bones from CT images using skeletally coupled deformable models.

    abstract::The in vivo investigation of joint kinematics in normal and injured wrist requires the segmentation of carpal bones from 3D (CT) images, and their registration over time. The non-uniformity of bone tissue, ranging from dense cortical bone to textured spongy bone, the irregular shape of closely packed carpal bones, sma...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(02)00065-8

    authors: Sebastian TB,Tek H,Crisco JJ,Kimia BB

    更新日期:2003-03-01 00:00:00

  • Bayesian principal geodesic analysis for estimating intrinsic diffeomorphic image variability.

    abstract::In this paper, we present a generative Bayesian approach for estimating the low-dimensional latent space of diffeomorphic shape variability in a population of images. We develop a latent variable model for principal geodesic analysis (PGA) that provides a probabilistic framework for factor analysis in the space of dif...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.04.009

    authors: Zhang M,Fletcher PT

    更新日期:2015-10-01 00:00:00

  • Automated landmarking and labeling of fully and partially scanned spinal columns in CT images.

    abstract::The spinal column is one of the most distinguishable structures in CT scans of the superior part of the human body. It is not necessary to segment the spinal column in order to use it as a frame of reference. It is sufficient to place landmarks and the appropriate anatomical labels at intervertebral disks and vertebra...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2013.07.005

    authors: Major D,Hladůvka J,Schulze F,Bühler K

    更新日期:2013-12-01 00:00:00

  • Automated classification of lung bronchovascular anatomy in CT using AdaBoost.

    abstract::Lung CAD systems require the ability to classify a variety of pulmonary structures as part of the diagnostic process. The purpose of this work was to develop a methodology for fully automated voxel-by-voxel classification of airways, fissures, nodules, and vessels from chest CT images using a single feature set and cl...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2007.03.004

    authors: Ochs RA,Goldin JG,Abtin F,Kim HJ,Brown K,Batra P,Roback D,McNitt-Gray MF,Brown MS

    更新日期:2007-06-01 00:00:00

  • Global localization of 3D anatomical structures by pre-filtered Hough forests and discrete optimization.

    abstract::The accurate localization of anatomical landmarks is a challenging task, often solved by domain specific approaches. We propose a method for the automatic localization of landmarks in complex, repetitive anatomical structures. The key idea is to combine three steps: (1) a classifier for pre-filtering anatomical landma...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2013.02.004

    authors: Donner R,Menze BH,Bischof H,Langs G

    更新日期:2013-12-01 00:00:00

  • Dynamically constructed network with error correction for accurate ventricle volume estimation.

    abstract::Automated ventricle volume estimation (AVVE) on cardiac magnetic resonance (CMR) images is very important for clinical cardiac disease diagnosis. However, current AVVE methods ignore the error correction for the estimated volume. This results in clinically intolerable ventricle volume estimation error and further lead...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101723

    authors: Luo G,Wang W,Tam C,Wang K,Cao S,Zhang H,Chen B,Li S

    更新日期:2020-08-01 00:00:00

  • Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs.

    abstract::The goal of this study is to provide a theoretical framework for accurately optimizing the segmentation energy considering all of the possible shapes generated from the level-set-based statistical shape model (SSM). The proposed algorithm solves the well-known open problem, in which a shape prior may not be optimal in...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.11.003

    authors: Saito A,Nawano S,Shimizu A

    更新日期:2016-02-01 00:00:00

  • Manifold modeling for brain population analysis.

    abstract::This paper describes a method for building efficient representations of large sets of brain images. Our hypothesis is that the space spanned by a set of brain images can be captured, to a close approximation, by a low-dimensional, nonlinear manifold. This paper presents a method to learn such a low-dimensional manifol...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2010.05.008

    authors: Gerber S,Tasdizen T,Thomas Fletcher P,Joshi S,Whitaker R,Alzheimers Disease Neuroimaging Initiative (ADNI).

    更新日期:2010-10-01 00:00:00

  • Wavelet optimization for content-based image retrieval in medical databases.

    abstract::We propose in this article a content-based image retrieval (CBIR) method for diagnosis aid in medical fields. In the proposed system, images are indexed in a generic fashion, without extracting domain-specific features: a signature is built for each image from its wavelet transform. These image signatures characterize...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2009.11.004

    authors: Quellec G,Lamard M,Cazuguel G,Cochener B,Roux C

    更新日期:2010-04-01 00:00:00

  • A gradient-based optical-flow cardiac motion estimation method for cine and tagged MR images.

    abstract::A new method is proposed to quantify the myocardial motion from both 2D C(ine)-MRI and T(agged)-MRI sequences. The tag pattern offers natural landmarks within the image that makes it possible to accurately quantify the motion within the myocardial wall. Therefore, several methods have been proposed for T-MRI. However,...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.06.016

    authors: Wang L,Clarysse P,Liu Z,Gao B,Liu W,Croisille P,Delachartre P

    更新日期:2019-10-01 00:00:00

  • A comprehensive study of stent visualization enhancement in X-ray images by image processing means.

    abstract::In this work we propose a comprehensive study of Digital Stent Enhancement (DSE), from the analysis of the requirements to the validation of the proposed solution. First, we derive the stent visualization requirements in the context of the clinical application and workflow. Then, we propose a DSE algorithm combining a...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.03.002

    authors: Bismuth V,Vaillant R,Funck F,Guillard N,Najman L

    更新日期:2011-08-01 00:00:00

  • Group-level cortical surface parcellation with sulcal pits labeling.

    abstract::Sulcal pits are the points of maximal depth within the folds of the cortical surface. These shape descriptors give a unique opportunity to access to a rich, fine-scale representation of the geometry and the developmental milestones of the cortical surface. However, using sulcal pits analysis at group level requires ne...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101749

    authors: Kaltenmark I,Deruelle C,Brun L,Lefèvre J,Coulon O,Auzias G

    更新日期:2020-12-01 00:00:00

  • Shape regression machine and efficient segmentation of left ventricle endocardium from 2D B-mode echocardiogram.

    abstract::We present a machine learning approach called shape regression machine (SRM) for efficient segmentation of an anatomic structure that exhibits a deformable shape in a medical image, e.g., left ventricle endocardial wall in an echocardiogram. The SRM achieves efficient segmentation via statistical learning of the inter...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2010.04.002

    authors: Zhou SK

    更新日期:2010-08-01 00:00:00

  • Independent component analysis using prior information for signal detection in a functional imaging system of the retina.

    abstract::Independent component analysis (ICA) is a statistical technique that estimates a set of sources mixed by an unknown mixing matrix using only a set of observations. For this purpose, the only assumption is that the sources are statistically independent. In many applications, some information about the nature of the unk...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2010.06.009

    authors: Barriga ES,Pattichis M,Ts'o D,Abramoff M,Kardon R,Kwon Y,Soliz P

    更新日期:2011-02-01 00:00:00

  • A subject-specific technique for respiratory motion correction in image-guided cardiac catheterisation procedures.

    abstract::We describe a system for respiratory motion correction of MRI-derived roadmaps for use in X-ray guided cardiac catheterisation procedures. The technique uses a subject-specific affine motion model that is quickly constructed from a short pre-procedure MRI scan. We test a dynamic MRI sequence that acquires a small numb...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2009.01.003

    authors: King AP,Boubertakh R,Rhode KS,Ma YL,Chinchapatnam P,Gao G,Tangcharoen T,Ginks M,Cooklin M,Gill JS,Hawkes DJ,Razavi RS,Schaeffter T

    更新日期:2009-06-01 00:00:00

  • CT male pelvic organ segmentation using fully convolutional networks with boundary sensitive representation.

    abstract::Accurate segmentation of the prostate and organs at risk (e.g., bladder and rectum) in CT images is a crucial step for radiation therapy in the treatment of prostate cancer. However, it is a very challenging task due to unclear boundaries, large intra- and inter-patient shape variability, and uncertain existence of bo...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.03.003

    authors: Wang S,He K,Nie D,Zhou S,Gao Y,Shen D

    更新日期:2019-05-01 00:00:00

  • Quantitative analysis of multi-spectral fundus images.

    abstract::We have developed a new technique for extracting histological parameters from multi-spectral images of the ocular fundus. The new method uses a Monte Carlo simulation of the reflectance of the fundus to model how the spectral reflectance of the tissue varies with differing tissue histology. The model is parameterised ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2006.05.007

    authors: Styles IB,Calcagni A,Claridge E,Orihuela-Espina F,Gibson JM

    更新日期:2006-08-01 00:00:00

  • Clavicle segmentation in chest radiographs.

    abstract::Automated delineation of anatomical structures in chest radiographs is difficult due to superimposition of multiple structures. In this work an automated technique to segment the clavicles in posterior-anterior chest radiographs is presented in which three methods are combined. Pixel classification is applied in two s...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2012.06.009

    authors: Hogeweg L,Sánchez CI,de Jong PA,Maduskar P,van Ginneken B

    更新日期:2012-12-01 00:00:00

  • A procedure to average 3D anatomical structures.

    abstract::Creating a feature-preserving average of three dimensional anatomical surfaces extracted from volume image data is a complex task. Unlike individual images, averages present right-left symmetry and smooth surfaces which give insight into typical proportions. Averaging multiple biological surface images requires carefu...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(00)00031-1

    authors: Subramanya K,Dean D

    更新日期:2000-12-01 00:00:00