Coupled parametric model for estimation of visual field tests based on OCT macular thickness maps, and vice versa, in glaucoma care.

Abstract:

:The current standard of care for glaucoma patients consists of functional assessment of vision via visual field (VF) testing, which is sensitive but subjective, time-consuming, and often unreliable. A new imaging technology, Fourier domain optical coherence tomography (OCT), is being introduced to assess the structural characteristics of the macula. This new complementary exam is efficient, objective, and reliable. A complex, but consistent, relationship exists between the structural information provided by macular OCT and the functional information gathered by VF maps. We propose a learning-based framework with the ability to estimate the VF map based on OCT macular thickness measurements as input (and vice versa). Central to this algorithmic framework is a coupled parametric model that captures not only the individual variabilities of the OCT macular thickness measurements and the VF maps, but also their co-dependencies. This model is derived by applying principal component analysis (PCA) to a library consisting of various pairs of OCT and VF maps. The parameters of this coupled model are obtained by solving a linear least squares problem. Next, these estimated parameters are used, in conjunction with the eigenvectors derived from PCA, to compute the estimate. The accuracy of this coupled parametric estimation model was evaluated by performing multiple leave-one-out cross validation experiments.

journal_name

Med Image Anal

journal_title

Medical image analysis

authors

Tsai A,Caprioli J,Shen LQ

doi

10.1016/j.media.2011.05.012

subject

Has Abstract

pub_date

2012-01-01 00:00:00

pages

101-13

issue

1

eissn

1361-8415

issn

1361-8423

pii

S1361-8415(11)00076-4

journal_volume

16

pub_type

杂志文章
  • Multiple hypothesis template tracking of small 3D vessel structures.

    abstract::A multiple hypothesis tracking approach to the segmentation of small 3D vessel structures is presented. By simultaneously tracking multiple hypothetical vessel trajectories, low contrast passages can be traversed, leading to an improved tracking performance in areas of low contrast. This work also contributes a novel ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2009.12.003

    authors: Friman O,Hindennach M,Kühnel C,Peitgen HO

    更新日期:2010-04-01 00:00:00

  • Groupwise multi-atlas segmentation of the spinal cord's internal structure.

    abstract::The spinal cord is an essential and vulnerable component of the central nervous system. Differentiating and localizing the spinal cord internal structure (i.e., gray matter vs. white matter) is critical for assessment of therapeutic impacts and determining prognosis of relevant conditions. Fortunately, new magnetic re...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.01.003

    authors: Asman AJ,Bryan FW,Smith SA,Reich DS,Landman BA

    更新日期:2014-04-01 00:00:00

  • Global localization of 3D anatomical structures by pre-filtered Hough forests and discrete optimization.

    abstract::The accurate localization of anatomical landmarks is a challenging task, often solved by domain specific approaches. We propose a method for the automatic localization of landmarks in complex, repetitive anatomical structures. The key idea is to combine three steps: (1) a classifier for pre-filtering anatomical landma...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2013.02.004

    authors: Donner R,Menze BH,Bischof H,Langs G

    更新日期:2013-12-01 00:00:00

  • Personalized mitral valve closure computation and uncertainty analysis from 3D echocardiography.

    abstract::Intervention planning is essential for successful Mitral Valve (MV) repair procedures. Finite-element models (FEM) of the MV could be used to achieve this goal, but the translation to the clinical domain is challenging. Many input parameters for the FEM models, such as tissue properties, are not known. In addition, on...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2016.03.011

    authors: Grbic S,Easley TF,Mansi T,Bloodworth CH,Pierce EL,Voigt I,Neumann D,Krebs J,Yuh DD,Jensen MO,Comaniciu D,Yoganathan AP

    更新日期:2017-01-01 00:00:00

  • Improvement of fully automated airway segmentation on volumetric computed tomographic images using a 2.5 dimensional convolutional neural net.

    abstract::We propose a novel airway segmentation method in volumetric chest computed tomography (CT) and evaluate its performance on multiple datasets. The segmentation is performed voxel-by-voxel by a 2.5D convolutional neural net (2.5D CNN) trained in a supervised manner. To enhance the accuracy of the segmented airway tree, ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.10.006

    authors: Yun J,Park J,Yu D,Yi J,Lee M,Park HJ,Lee JG,Seo JB,Kim N

    更新日期:2019-01-01 00:00:00

  • Exudate detection in color retinal images for mass screening of diabetic retinopathy.

    abstract::The automatic detection of exudates in color eye fundus images is an important task in applications such as diabetic retinopathy screening. The presented work has been undertaken in the framework of the TeleOphta project, whose main objective is to automatically detect normal exams in a tele-ophthalmology network, thu...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.05.004

    authors: Zhang X,Thibault G,Decencière E,Marcotegui B,Laÿ B,Danno R,Cazuguel G,Quellec G,Lamard M,Massin P,Chabouis A,Victor Z,Erginay A

    更新日期:2014-10-01 00:00:00

  • CorteXpert: A model-based method for automatic renal cortex segmentation.

    abstract::This paper introduces a model-based approach for a fully automatic delineation of kidney and cortex tissue from contrast-enhanced abdominal CT scans. The proposed framework, named CorteXpert, consists of two new strategies for kidney tissue delineation: cortex model adaptation and non-uniform graph search. CorteXpert ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2017.06.010

    authors: Xiang D,Bagci U,Jin C,Shi F,Zhu W,Yao J,Sonka M,Chen X

    更新日期:2017-12-01 00:00:00

  • Intensity non-uniformity correction in MRI: existing methods and their validation.

    abstract::Magnetic resonance imaging is a popular and powerful non-invasive imaging technique. Automated analysis has become mandatory to efficiently cope with the large amount of data generated using this modality. However, several artifacts, such as intensity non-uniformity, can degrade the quality of acquired data. Intensity...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2005.09.004

    authors: Belaroussi B,Milles J,Carme S,Zhu YM,Benoit-Cattin H

    更新日期:2006-04-01 00:00:00

  • A comprehensive study of stent visualization enhancement in X-ray images by image processing means.

    abstract::In this work we propose a comprehensive study of Digital Stent Enhancement (DSE), from the analysis of the requirements to the validation of the proposed solution. First, we derive the stent visualization requirements in the context of the clinical application and workflow. Then, we propose a DSE algorithm combining a...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.03.002

    authors: Bismuth V,Vaillant R,Funck F,Guillard N,Najman L

    更新日期:2011-08-01 00:00:00

  • Improved fidelity of brain microstructure mapping from single-shell diffusion MRI.

    abstract::Diffusion weighted imaging (DWI) is sensitive to alterations in the diffusion of water molecules caused by microstructural barriers. Different microstructural compartments are characterized by differences in DWI signal. Diffusion tensor imaging conflates the signal from these compartments into a single tensor, which p...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.10.004

    authors: Taquet M,Scherrer B,Boumal N,Peters JM,Macq B,Warfield SK

    更新日期:2015-12-01 00:00:00

  • A novel cortical thickness estimation method based on volumetric Laplace-Beltrami operator and heat kernel.

    abstract::Cortical thickness estimation in magnetic resonance imaging (MRI) is an important technique for research on brain development and neurodegenerative diseases. This paper presents a heat kernel based cortical thickness estimation algorithm, which is driven by the graph spectrum and the heat kernel theory, to capture the...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.01.005

    authors: Wang G,Zhang X,Su Q,Shi J,Caselli RJ,Wang Y,Alzheimer’s Disease Neuroimaging Initiative.

    更新日期:2015-05-01 00:00:00

  • A review of machine learning methods for retinal blood vessel segmentation and artery/vein classification.

    abstract::The eye affords a unique opportunity to inspect a rich part of the human microvasculature non-invasively via retinal imaging. Retinal blood vessel segmentation and classification are prime steps for the diagnosis and risk assessment of microvascular and systemic diseases. A high volume of techniques based on deep lear...

    journal_title:Medical image analysis

    pub_type: 杂志文章,评审

    doi:10.1016/j.media.2020.101905

    authors: Mookiah MRK,Hogg S,MacGillivray TJ,Prathiba V,Pradeepa R,Mohan V,Anjana RM,Doney AS,Palmer CNA,Trucco E

    更新日期:2021-02-01 00:00:00

  • Automated comprehensive Adolescent Idiopathic Scoliosis assessment using MVC-Net.

    abstract::Automated quantitative estimation of spinal curvature is an important task for the ongoing evaluation and treatment planning of Adolescent Idiopathic Scoliosis (AIS). It solves the widely accepted disadvantage of manual Cobb angle measurement (time-consuming and unreliable) which is currently the gold standard for AIS...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.05.005

    authors: Wu H,Bailey C,Rasoulinejad P,Li S

    更新日期:2018-08-01 00:00:00

  • Multi-task exclusive relationship learning for alzheimer's disease progression prediction with longitudinal data.

    abstract::Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive impairment of memory and other cognitive functions. Currently, many multi-task learning approaches have been proposed to predict the disease progression at the early stage using longitudinal data, with each task corresponding to a pa...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.01.007

    authors: Wang M,Zhang D,Shen D,Liu M

    更新日期:2019-04-01 00:00:00

  • Generalised coherent point drift for group-wise multi-dimensional analysis of diffusion brain MRI data.

    abstract::A probabilistic framework for registering generalised point sets comprising multiple voxel-wise data features such as positions, orientations and scalar-valued quantities, is proposed. It is employed for the analysis of magnetic resonance diffusion tensor image (DTI)-derived quantities, such as fractional anisotropy (...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.01.001

    authors: Ravikumar N,Gooya A,Beltrachini L,Frangi AF,Taylor ZA

    更新日期:2019-04-01 00:00:00

  • BrainSuite: an automated cortical surface identification tool.

    abstract::We describe a new magnetic resonance (MR) image analysis tool that produces cortical surface representations with spherical topology from MR images of the human brain. The tool provides a sequence of low-level operations in a single package that can produce accurate brain segmentations in clinical time. The tools incl...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(02)00054-3

    authors: Shattuck DW,Leahy RM

    更新日期:2002-06-01 00:00:00

  • Hierarchical max-flow segmentation framework for multi-atlas segmentation with Kohonen self-organizing map based Gaussian mixture modeling.

    abstract::The incorporation of intensity, spatial, and topological information into large-scale multi-region segmentation has been a topic of ongoing research in medical image analysis. Multi-region segmentation problems, such as segmentation of brain structures, pose unique challenges in image segmentation in which regions may...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.05.005

    authors: Rajchl M,Baxter JS,McLeod AJ,Yuan J,Qiu W,Peters TM,Khan AR

    更新日期:2016-01-01 00:00:00

  • Cardiac function estimation from MRI using a heart model and data assimilation: advances and difficulties.

    abstract::In this paper, we present a framework to estimate local ventricular myocardium contractility using clinical MRI, a heart model and data assimilation. First, we build a generic anatomical model of the ventricles including muscle fibre orientations and anatomical subdivisions. Then, this model is deformed to fit a clini...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2006.04.002

    authors: Sermesant M,Moireau P,Camara O,Sainte-Marie J,Andriantsimiavona R,Cimrman R,Hill DL,Chapelle D,Razavi R

    更新日期:2006-08-01 00:00:00

  • Nonlinear multiscale regularisation in MR elastography: Towards fine feature mapping.

    abstract::Fine-featured elastograms may provide additional information of radiological interest in the context of in vivo elastography. Here a new image processing pipeline called ESP (Elastography Software Pipeline) is developed to create Magnetic Resonance Elastography (MRE) maps of viscoelastic parameters (complex modulus ma...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2016.05.012

    authors: Barnhill E,Hollis L,Sack I,Braun J,Hoskins PR,Pankaj P,Brown C,van Beek EJR,Roberts N

    更新日期:2017-01-01 00:00:00

  • Simulation of cardiac pathologies using an electromechanical biventricular model and XMR interventional imaging.

    abstract::Simulating cardiac electromechanical activity is of great interest for a better understanding of pathologies and for therapy planning. Design and validation of such models is difficult due to the lack of clinical data. XMR systems are a new type of interventional facility in which patients can be rapidly transferred b...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2005.05.003

    authors: Sermesant M,Rhode K,Sanchez-Ortiz GI,Camara O,Andriantsimiavona R,Hegde S,Rueckert D,Lambiase P,Bucknall C,Rosenthal E,Delingette H,Hill DL,Ayache N,Razavi R

    更新日期:2005-10-01 00:00:00

  • Suite of meshless algorithms for accurate computation of soft tissue deformation for surgical simulation.

    abstract::The ability to predict patient-specific soft tissue deformations is key for computer-integrated surgery systems and the core enabling technology for a new era of personalized medicine. Element-Free Galerkin (EFG) methods are better suited for solving soft tissue deformation problems than the finite element method (FEM...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.06.004

    authors: Joldes G,Bourantas G,Zwick B,Chowdhury H,Wittek A,Agrawal S,Mountris K,Hyde D,Warfield SK,Miller K

    更新日期:2019-08-01 00:00:00

  • Respiratory motion models: a review.

    abstract::The problem of respiratory motion has proved a serious obstacle in developing techniques to acquire images or guide interventions in abdominal and thoracic organs. Motion models offer a possible solution to these problems, and as a result the field of respiratory motion modelling has become an active one over the past...

    journal_title:Medical image analysis

    pub_type: 杂志文章,评审

    doi:10.1016/j.media.2012.09.005

    authors: McClelland JR,Hawkes DJ,Schaeffter T,King AP

    更新日期:2013-01-01 00:00:00

  • Quantitative analysis of retinal OCT.

    abstract::Clinical acceptance of 3-D OCT retinal imaging brought rapid development of quantitative 3-D analysis of retinal layers, vasculature, retinal lesions as well as facilitated new research in retinal diseases. One of the cornerstones of many such analyses is segmentation and thickness quantification of retinal layers and...

    journal_title:Medical image analysis

    pub_type: 社论

    doi:10.1016/j.media.2016.06.001

    authors: Sonka M,Abràmoff MD

    更新日期:2016-10-01 00:00:00

  • Evaluation of automatic neonatal brain segmentation algorithms: the NeoBrainS12 challenge.

    abstract::A number of algorithms for brain segmentation in preterm born infants have been published, but a reliable comparison of their performance is lacking. The NeoBrainS12 study (http://neobrains12.isi.uu.nl), providing three different image sets of preterm born infants, was set up to provide such a comparison. These sets a...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.11.001

    authors: Išgum I,Benders MJ,Avants B,Cardoso MJ,Counsell SJ,Gomez EF,Gui L,Hűppi PS,Kersbergen KJ,Makropoulos A,Melbourne A,Moeskops P,Mol CP,Kuklisova-Murgasova M,Rueckert D,Schnabel JA,Srhoj-Egekher V,Wu J,Wang S,de Vries

    更新日期:2015-02-01 00:00:00

  • Image guidance in orthopaedics and traumatology: A historical perspective.

    abstract::In this note we summarize the history of computer aided surgery in orthopaedics and traumatology from the end of the nineteenth century to currently observable future trends. We concentrate on the two major components of such systems, pre-operative planning and intra-operative execution. The evolution of the necessary...

    journal_title:Medical image analysis

    pub_type: 社论

    doi:10.1016/j.media.2016.06.033

    authors: Székely G,Nolte LP

    更新日期:2016-10-01 00:00:00

  • Deformable image registration by combining uncertainty estimates from supervoxel belief propagation.

    abstract::Discrete optimisation strategies have a number of advantages over their continuous counterparts for deformable registration of medical images. For example: it is not necessary to compute derivatives of the similarity term; dense sampling of the search space reduces the risk of becoming trapped in local optima; and (in...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.09.005

    authors: Heinrich MP,Simpson IJ,Papież BW,Brady SM,Schnabel JA

    更新日期:2016-01-01 00:00:00

  • Super-Resolved q-Space deep learning with uncertainty quantification.

    abstract::Diffusion magnetic resonance imaging (dMRI) provides a noninvasive method for measuring brain tissue microstructure. q-Space deep learning(q-DL) methods have been developed to accurately estimate tissue microstructure from dMRI scans acquired with a reduced number of diffusion gradients. In these methods, deep network...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101885

    authors: Qin Y,Liu Z,Liu C,Li Y,Zeng X,Ye C

    更新日期:2021-01-01 00:00:00

  • Discriminant snakes for 3D reconstruction of anatomical organs.

    abstract::In this work a new statistic deformable model for 3D segmentation of anatomical organs in medical images is proposed. A statistic discriminant snake performs a supervised learning of the object boundary in an image slice to segment the next slice of the image sequence. Each part of the object boundary is projected in ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(03)00014-8

    authors: Pardo XM,Radeva P,Cabello D

    更新日期:2003-09-01 00:00:00

  • Automated size-specific dose estimates using deep learning image processing.

    abstract::An automated vendor-independent system for dose monitoring in computed tomography (CT) medical examinations involving ionizing radiation is presented in this paper. The system provides precise size-specific dose estimates (SSDE) following the American Association of Physicists in Medicine regulations. Our dose managem...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101898

    authors: Juszczyk J,Badura P,Czajkowska J,Wijata A,Andrzejewski J,Bozek P,Smolinski M,Biesok M,Sage A,Rudzki M,Wieclawek W

    更新日期:2021-02-01 00:00:00

  • Incomplete multi-modal representation learning for Alzheimer's disease diagnosis.

    abstract::Alzheimers disease (AD) is a complex neurodegenerative disease. Its early diagnosis and treatment have been a major concern of researchers. Currently, the multi-modality data representation learning of this disease is gradually becoming an emerging research field, attracting widespread attention. However, in practice,...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101953

    authors: Liu Y,Fan L,Zhang C,Zhou T,Xiao Z,Geng L,Shen D

    更新日期:2021-01-01 00:00:00