Image guidance in orthopaedics and traumatology: A historical perspective.

Abstract:

:In this note we summarize the history of computer aided surgery in orthopaedics and traumatology from the end of the nineteenth century to currently observable future trends. We concentrate on the two major components of such systems, pre-operative planning and intra-operative execution. The evolution of the necessary technological components, the numerous platforms and components offered commercially as well as their clinical use are surveyed.

journal_name

Med Image Anal

journal_title

Medical image analysis

authors

Székely G,Nolte LP

doi

10.1016/j.media.2016.06.033

subject

Has Abstract

pub_date

2016-10-01 00:00:00

pages

79-83

eissn

1361-8415

issn

1361-8423

pii

S1361-8415(16)30110-4

journal_volume

33

pub_type

社论
  • MR to ultrasound registration for image-guided prostate interventions.

    abstract::A deformable registration method is described that enables automatic alignment of magnetic resonance (MR) and 3D transrectal ultrasound (TRUS) images of the prostate gland. The method employs a novel "model-to-image" registration approach in which a deformable model of the gland surface, derived from an MR image, is r...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2010.11.003

    authors: Hu Y,Ahmed HU,Taylor Z,Allen C,Emberton M,Hawkes D,Barratt D

    更新日期:2012-04-01 00:00:00

  • Real-time image-based rigid registration of three-dimensional ultrasound.

    abstract::Registration of three-dimensional ultrasound (3DUS) volumes is necessary in several applications, such as when stitching volumes to expand the field of view or when stabilizing a temporal sequence of volumes to cancel out motion of the probe or anatomy. Current systems that register 3DUS volumes either use external tr...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.10.004

    authors: Schneider RJ,Perrin DP,Vasilyev NV,Marx GR,Del Nido PJ,Howe RD

    更新日期:2012-02-01 00:00:00

  • Rubik's Cube+: A self-supervised feature learning framework for 3D medical image analysis.

    abstract::Due to the development of deep learning, an increasing number of research works have been proposed to establish automated analysis systems for 3D volumetric medical data to improve the quality of patient care. However, it is challenging to obtain a large number of annotated 3D medical data needed to train a neural net...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101746

    authors: Zhu J,Li Y,Hu Y,Ma K,Zhou SK,Zheng Y

    更新日期:2020-08-01 00:00:00

  • A symbolic environment for visualizing activated foci in functional neuroimaging datasets.

    abstract::This paper presents a symbolic visualization environment known as the Corner Cube environment, which was developed to facilitate rapid examination and comparison of activated foci defined by analyses of functional neuroimaging datasets. We have performed a comparative evaluation of this environment against maximum-int...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(98)80020-0

    authors: Rehm K,Lakshminaryan K,Frutiger S,Schaper KA,Sumners DW,Strother SC,Anderson JR,Rottenberg DA

    更新日期:1998-09-01 00:00:00

  • Ultrasound-fluoroscopy registration for prostate brachytherapy dosimetry.

    abstract::Prostate brachytherapy is a treatment for prostate cancer using radioactive seeds that are permanently implanted in the prostate. The treatment success depends on adequate coverage of the target gland with a therapeutic dose, while sparing the surrounding tissue. Since seed implantation is performed under transrectal ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2012.06.001

    authors: Dehghan E,Lee J,Fallavollita P,Kuo N,Deguet A,Le Y,Clif Burdette E,Song DY,Prince JL,Fichtinger G

    更新日期:2012-10-01 00:00:00

  • Statistical shape model of atria, ventricles and epicardium from short- and long-axis MR images.

    abstract::We describe a new 3-D statistical shape model of the heart consisting of atria, ventricles and epicardium. The model was constructed by combining information on standard short- and long-axis cardiac MR images. In the model, the variability of the shape was modeled with PCA- and ICA-based shape models as well as with n...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2004.06.013

    authors: Lötjönen J,Kivistö S,Koikkalainen J,Smutek D,Lauerma K

    更新日期:2004-09-01 00:00:00

  • Intensity inhomogeneity correction of SD-OCT data using macular flatspace.

    abstract::Images of the retina acquired using optical coherence tomography (OCT) often suffer from intensity inhomogeneity problems that degrade both the quality of the images and the performance of automated algorithms utilized to measure structural changes. This intensity variation has many causes, including off-axis acquisit...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2017.09.008

    authors: Lang A,Carass A,Jedynak BM,Solomon SD,Calabresi PA,Prince JL

    更新日期:2018-01-01 00:00:00

  • Vessel extraction from non-fluorescein fundus images using orientation-aware detector.

    abstract::The automatic extraction of blood vessels in non-fluorescein eye fundus images is a tough task in applications such as diabetic retinopathy screening. However, vessel shapes have complex variations, and accurate modeling of retinal vascular structures is challenging. We have therefore developed a new approach to accur...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.09.002

    authors: Yin B,Li H,Sheng B,Hou X,Chen Y,Wu W,Li P,Shen R,Bao Y,Jia W

    更新日期:2015-12-01 00:00:00

  • Classification of hemodynamics from dynamic-susceptibility-contrast magnetic resonance (DSC-MR) brain images using noiseless independent factor analysis.

    abstract::Dynamic-susceptibility-contrast (DSC) magnetic resonance imaging records signal changes on images when the injected contrast-agent particles pass through a human brain. The temporal signal changes on different brain tissues manifest distinct blood-supply patterns which are vital for the profound analysis of cerebral h...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2007.02.002

    authors: Chou YC,Teng MM,Guo WY,Hsieh JC,Wu YT

    更新日期:2007-06-01 00:00:00

  • SDAE-GAN: Enable high-dimensional pathological images in liver cancer survival prediction with a policy gradient based data augmentation method.

    abstract::High-dimensional pathological images produced by Immunohistochemistry (IHC) methods consist of many pathological indexes, which play critical roles in cancer treatment planning. However, these indexes currently cannot be utilized in survival prediction because joining them with patients' clinicopathological features (...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101640

    authors: Wu H,Gao R,Sheng YP,Chen B,Li S

    更新日期:2020-05-01 00:00:00

  • Regularized siamese neural network for unsupervised outlier detection on brain multiparametric magnetic resonance imaging: Application to epilepsy lesion screening.

    abstract::In this study, we propose a novel anomaly detection model targeting subtle brain lesions in multiparametric MRI. To compensate for the lack of annotated data adequately sampling the heterogeneity of such pathologies, we cast this problem as an outlier detection problem and introduce a novel configuration of unsupervis...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101618

    authors: Alaverdyan Z,Jung J,Bouet R,Lartizien C

    更新日期:2020-02-01 00:00:00

  • Tumor sensitive matching flow: A variational method to detecting and segmenting perihepatic and perisplenic ovarian cancer metastases on contrast-enhanced abdominal CT.

    abstract::Accurate automated segmentation and detection of ovarian cancer metastases may improve the diagnosis and prognosis of women with ovarian cancer. In this paper, we focus on an important subset of ovarian cancer metastases that spread to the surface of the liver and spleen. Automated ovarian cancer metastasis detection ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.04.001

    authors: Liu J,Wang S,Linguraru MG,Yao J,Summers RM

    更新日期:2014-07-01 00:00:00

  • Cardiac image modelling: Breadth and depth in heart disease.

    abstract::With the advent of large-scale imaging studies and big health data, and the corresponding growth in analytics, machine learning and computational image analysis methods, there are now exciting opportunities for deepening our understanding of the mechanisms and characteristics of heart disease. Two emerging fields are ...

    journal_title:Medical image analysis

    pub_type: 社论,评审

    doi:10.1016/j.media.2016.06.027

    authors: Suinesiaputra A,McCulloch AD,Nash MP,Pontre B,Young AA

    更新日期:2016-10-01 00:00:00

  • Spatially variable Rician noise in magnetic resonance imaging.

    abstract::Magnetic resonance images tend to be influenced by various random factors usually referred to as "noise". The principal sources of noise and related artefacts can be divided into two types: arising from hardware (acquisition coil arrays, gradient coils, field inhomogeneity); and arising from the subject (physiological...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.12.002

    authors: Maximov II,Farrher E,Grinberg F,Shah NJ

    更新日期:2012-02-01 00:00:00

  • Discriminative dictionary learning for abdominal multi-organ segmentation.

    abstract::An automated segmentation method is presented for multi-organ segmentation in abdominal CT images. Dictionary learning and sparse coding techniques are used in the proposed method to generate target specific priors for segmentation. The method simultaneously learns dictionaries which have reconstructive power and clas...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.04.015

    authors: Tong T,Wolz R,Wang Z,Gao Q,Misawa K,Fujiwara M,Mori K,Hajnal JV,Rueckert D

    更新日期:2015-07-01 00:00:00

  • Towards intelligent robust detection of anatomical structures in incomplete volumetric data.

    abstract::Robust and fast detection of anatomical structures represents an important component of medical image analysis technologies. Current solutions for anatomy detection are based on machine learning, and are generally driven by suboptimal and exhaustive search strategies. In particular, these techniques do not effectively...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.06.007

    authors: Ghesu FC,Georgescu B,Grbic S,Maier A,Hornegger J,Comaniciu D

    更新日期:2018-08-01 00:00:00

  • Directional wavelet based features for colonic polyp classification.

    abstract::In this work, various wavelet based methods like the discrete wavelet transform, the dual-tree complex wavelet transform, the Gabor wavelet transform, curvelets, contourlets and shearlets are applied for the automated classification of colonic polyps. The methods are tested on 8 HD-endoscopic image databases, where ea...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2016.02.001

    authors: Wimmer G,Tamaki T,Tischendorf JJ,Häfner M,Yoshida S,Tanaka S,Uhl A

    更新日期:2016-07-01 00:00:00

  • Adaptive, template moderated, spatially varying statistical classification.

    abstract::A novel image segmentation algorithm was developed to allow the automatic segmentation of both normal and abnormal anatomy from medical images. The new algorithm is a form of spatially varying statistical classification, in which an explicit anatomical template is used to moderate the segmentation obtained by statisti...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(00)00003-7

    authors: Warfield SK,Kaus M,Jolesz FA,Kikinis R

    更新日期:2000-03-01 00:00:00

  • Quantitative analysis of multi-spectral fundus images.

    abstract::We have developed a new technique for extracting histological parameters from multi-spectral images of the ocular fundus. The new method uses a Monte Carlo simulation of the reflectance of the fundus to model how the spectral reflectance of the tissue varies with differing tissue histology. The model is parameterised ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2006.05.007

    authors: Styles IB,Calcagni A,Claridge E,Orihuela-Espina F,Gibson JM

    更新日期:2006-08-01 00:00:00

  • Recovering from missing data in population imaging - Cardiac MR image imputation via conditional generative adversarial nets.

    abstract::Accurate ventricular volume measurements are the primary indicators of normal/abnor- mal cardiac function and are dependent on the Cardiac Magnetic Resonance (CMR) volumes being complete. However, missing or unusable slices owing to the presence of image artefacts such as respiratory or motion ghosting, aliasing, ring...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101812

    authors: Xia Y,Zhang L,Ravikumar N,Attar R,Piechnik SK,Neubauer S,Petersen SE,Frangi AF

    更新日期:2021-01-01 00:00:00

  • Coupled parametric model for estimation of visual field tests based on OCT macular thickness maps, and vice versa, in glaucoma care.

    abstract::The current standard of care for glaucoma patients consists of functional assessment of vision via visual field (VF) testing, which is sensitive but subjective, time-consuming, and often unreliable. A new imaging technology, Fourier domain optical coherence tomography (OCT), is being introduced to assess the structura...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.05.012

    authors: Tsai A,Caprioli J,Shen LQ

    更新日期:2012-01-01 00:00:00

  • Pseudo-healthy synthesis with pathology disentanglement and adversarial learning.

    abstract::Pseudo-healthy synthesis is the task of creating a subject-specific 'healthy' image from a pathological one. Such images can be helpful in tasks such as anomaly detection and understanding changes induced by pathology and disease. In this paper, we present a model that is encouraged to disentangle the information of p...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101719

    authors: Xia T,Chartsias A,Tsaftaris SA

    更新日期:2020-08-01 00:00:00

  • Intrasubject multimodal groupwise registration with the conditional template entropy.

    abstract::Image registration is an important task in medical image analysis. Whereas most methods are designed for the registration of two images (pairwise registration), there is an increasing interest in simultaneously aligning more than two images using groupwise registration. Multimodal registration in a groupwise setting r...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.02.003

    authors: Polfliet M,Klein S,Huizinga W,Paulides MM,Niessen WJ,Vandemeulebroucke J

    更新日期:2018-05-01 00:00:00

  • Improved fidelity of brain microstructure mapping from single-shell diffusion MRI.

    abstract::Diffusion weighted imaging (DWI) is sensitive to alterations in the diffusion of water molecules caused by microstructural barriers. Different microstructural compartments are characterized by differences in DWI signal. Diffusion tensor imaging conflates the signal from these compartments into a single tensor, which p...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.10.004

    authors: Taquet M,Scherrer B,Boumal N,Peters JM,Macq B,Warfield SK

    更新日期:2015-12-01 00:00:00

  • Hierarchical spherical deformation for cortical surface registration.

    abstract::We present hierarchical spherical deformation for a group-wise shape correspondence to address template selection bias and to minimize registration distortion. In this work, we aim at a continuous and smooth deformation field to guide accurate cortical surface registration. In conventional spherical registration metho...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.06.013

    authors: Lyu I,Kang H,Woodward ND,Styner MA,Landman BA

    更新日期:2019-10-01 00:00:00

  • Statistical shape models for 3D medical image segmentation: a review.

    abstract::Statistical shape models (SSMs) have by now been firmly established as a robust tool for segmentation of medical images. While 2D models have been in use since the early 1990 s, wide-spread utilization of three-dimensional models appeared only in recent years, primarily made possible by breakthroughs in automatic dete...

    journal_title:Medical image analysis

    pub_type: 杂志文章,评审

    doi:10.1016/j.media.2009.05.004

    authors: Heimann T,Meinzer HP

    更新日期:2009-08-01 00:00:00

  • Self-similarity weighted mutual information: a new nonrigid image registration metric.

    abstract::Mutual information (MI) has been widely used as a similarity measure for rigid registration of multi-modal and uni-modal medical images. However, robust application of MI to deformable registration is challenging mainly because rich structural information, which are critical cues for successful deformable registration...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2013.12.003

    authors: Rivaz H,Karimaghaloo Z,Collins DL

    更新日期:2014-02-01 00:00:00

  • Ω-Net (Omega-Net): Fully automatic, multi-view cardiac MR detection, orientation, and segmentation with deep neural networks.

    abstract::Pixelwise segmentation of the left ventricular (LV) myocardium and the four cardiac chambers in 2-D steady state free precession (SSFP) cine sequences is an essential preprocessing step for a wide range of analyses. Variability in contrast, appearance, orientation, and placement of the heart between patients, clinical...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.05.008

    authors: Vigneault DM,Xie W,Ho CY,Bluemke DA,Noble JA

    更新日期:2018-08-01 00:00:00

  • Towards cross-modal organ translation and segmentation: A cycle- and shape-consistent generative adversarial network.

    abstract::Synthesized medical images have several important applications. For instance, they can be used as an intermedium in cross-modality image registration or used as augmented training samples to boost the generalization capability of a classifier. In this work, we propose a generic cross-modality synthesis approach with t...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.12.002

    authors: Cai J,Zhang Z,Cui L,Zheng Y,Yang L

    更新日期:2019-02-01 00:00:00

  • Simulation of cardiac pathologies using an electromechanical biventricular model and XMR interventional imaging.

    abstract::Simulating cardiac electromechanical activity is of great interest for a better understanding of pathologies and for therapy planning. Design and validation of such models is difficult due to the lack of clinical data. XMR systems are a new type of interventional facility in which patients can be rapidly transferred b...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2005.05.003

    authors: Sermesant M,Rhode K,Sanchez-Ortiz GI,Camara O,Andriantsimiavona R,Hegde S,Rueckert D,Lambiase P,Bucknall C,Rosenthal E,Delingette H,Hill DL,Ayache N,Razavi R

    更新日期:2005-10-01 00:00:00