Group-level cortical surface parcellation with sulcal pits labeling.

Abstract:

:Sulcal pits are the points of maximal depth within the folds of the cortical surface. These shape descriptors give a unique opportunity to access to a rich, fine-scale representation of the geometry and the developmental milestones of the cortical surface. However, using sulcal pits analysis at group level requires new numerical tools to establish inter-subject correspondences. Here, we address this issue by taking advantage of the geometrical information carried by sulcal basins that are the local patches of surfaces surrounding each sulcal pit. Our framework consists in two phases. First, we present a new method to generate a population-specific atlas of this sulcal basins organi- zation as a fold-level parcellation of the cortical surface. Then, we address the labeling of individual sulcal pits and corresponding basins with respect to this atlas. To assess their validity, we applied these methodological advances on two different populations of healthy subjects. The first database of 137 adults allowed us to compare our method to the state-of-the-art and the second database of 209 children, aged between 0 and 18 years, illustrates the adaptability and relevance of our method in the context of pediatric data showing strong variations in cortical volume and folding.

journal_name

Med Image Anal

journal_title

Medical image analysis

authors

Kaltenmark I,Deruelle C,Brun L,Lefèvre J,Coulon O,Auzias G

doi

10.1016/j.media.2020.101749

subject

Has Abstract

pub_date

2020-12-01 00:00:00

pages

101749

eissn

1361-8415

issn

1361-8423

pii

S1361-8415(20)30113-4

journal_volume

66

pub_type

杂志文章
  • A variational framework for integrating segmentation and registration through active contours.

    abstract::Traditionally, segmentation and registration have been solved as two independent problems, even though it is often the case that the solution to one impacts the solution to the other. In this paper, we introduce a geometric, variational framework that uses active contours to simultaneously segment and register feature...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(03)00004-5

    authors: Yezzi A,Zöllei L,Kapur T

    更新日期:2003-06-01 00:00:00

  • 4D hyperspherical harmonic (HyperSPHARM) representation of surface anatomy: a holistic treatment of multiple disconnected anatomical structures.

    abstract::Image-based parcellation of the brain often leads to multiple disconnected anatomical structures, which pose significant challenges for analyses of morphological shapes. Existing shape models, such as the widely used spherical harmonic (SPHARM) representation, assume topological invariance, so are unable to simultaneo...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.02.004

    authors: Pasha Hosseinbor A,Chung MK,Koay CG,Schaefer SM,van Reekum CM,Schmitz LP,Sutterer M,Alexander AL,Davidson RJ

    更新日期:2015-05-01 00:00:00

  • An accurate, fast and robust method to generate patient-specific cubic Hermite meshes.

    abstract::In-silico continuum simulations of organ and tissue scale physiology often require a discretisation or mesh of the solution domain. Cubic Hermite meshes provide a smooth representation of anatomy that is well-suited for simulating large deformation mechanics. Models of organ mechanics and deformation have demonstrated...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.06.010

    authors: Lamata P,Niederer S,Nordsletten D,Barber DC,Roy I,Hose DR,Smith N

    更新日期:2011-12-01 00:00:00

  • Sensorless freehand 3D ultrasound in real tissue: speckle decorrelation without fully developed speckle.

    abstract::It has previously been demonstrated that freehand 3D ultrasound can be acquired without a position sensor by measuring the elevational speckle decorrelation from frame to frame. However, this requires that the B-scans contain significant amounts of fully developed speckle. In this paper, we show that this condition is...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2005.08.001

    authors: Gee AH,James Housden R,Hassenpflug P,Treece GM,Prager RW

    更新日期:2006-04-01 00:00:00

  • Multiple hypothesis template tracking of small 3D vessel structures.

    abstract::A multiple hypothesis tracking approach to the segmentation of small 3D vessel structures is presented. By simultaneously tracking multiple hypothetical vessel trajectories, low contrast passages can be traversed, leading to an improved tracking performance in areas of low contrast. This work also contributes a novel ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2009.12.003

    authors: Friman O,Hindennach M,Kühnel C,Peitgen HO

    更新日期:2010-04-01 00:00:00

  • Towards intelligent robust detection of anatomical structures in incomplete volumetric data.

    abstract::Robust and fast detection of anatomical structures represents an important component of medical image analysis technologies. Current solutions for anatomy detection are based on machine learning, and are generally driven by suboptimal and exhaustive search strategies. In particular, these techniques do not effectively...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.06.007

    authors: Ghesu FC,Georgescu B,Grbic S,Maier A,Hornegger J,Comaniciu D

    更新日期:2018-08-01 00:00:00

  • A spatiotemporal statistical atlas of motion for the quantification of abnormal myocardial tissue velocities.

    abstract::In this paper, we present a new method for the automatic comparison of myocardial motion patterns and the characterization of their degree of abnormality, based on a statistical atlas of motion built from a reference healthy population. Our main contribution is the computation of atlas-based indexes that quantify the ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2010.12.006

    authors: Duchateau N,De Craene M,Piella G,Silva E,Doltra A,Sitges M,Bijnens BH,Frangi AF

    更新日期:2011-06-01 00:00:00

  • Multimodal image registration using floating regressors in the joint intensity scatter plot.

    abstract::This paper presents a new approach for multimodal medical image registration and compares it to normalized mutual information (NMI) and the correlation ratio (CR). Like NMI and CR, the new method's measure of registration quality is based on the distribution of points in the joint intensity scatter plot (JISP); compac...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2007.12.002

    authors: Orchard J

    更新日期:2008-08-01 00:00:00

  • Shape regression machine and efficient segmentation of left ventricle endocardium from 2D B-mode echocardiogram.

    abstract::We present a machine learning approach called shape regression machine (SRM) for efficient segmentation of an anatomic structure that exhibits a deformable shape in a medical image, e.g., left ventricle endocardial wall in an echocardiogram. The SRM achieves efficient segmentation via statistical learning of the inter...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2010.04.002

    authors: Zhou SK

    更新日期:2010-08-01 00:00:00

  • Dynamically constructed network with error correction for accurate ventricle volume estimation.

    abstract::Automated ventricle volume estimation (AVVE) on cardiac magnetic resonance (CMR) images is very important for clinical cardiac disease diagnosis. However, current AVVE methods ignore the error correction for the estimated volume. This results in clinically intolerable ventricle volume estimation error and further lead...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101723

    authors: Luo G,Wang W,Tam C,Wang K,Cao S,Zhang H,Chen B,Li S

    更新日期:2020-08-01 00:00:00

  • Intrasubject multimodal groupwise registration with the conditional template entropy.

    abstract::Image registration is an important task in medical image analysis. Whereas most methods are designed for the registration of two images (pairwise registration), there is an increasing interest in simultaneously aligning more than two images using groupwise registration. Multimodal registration in a groupwise setting r...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.02.003

    authors: Polfliet M,Klein S,Huizinga W,Paulides MM,Niessen WJ,Vandemeulebroucke J

    更新日期:2018-05-01 00:00:00

  • Computerized detection of pulmonary nodules in chest radiographs based on morphological features and wavelet snake model.

    abstract::We have developed a new computer-aided diagnosis scheme for automated detection of lung nodules in digital chest radiographs based on a combination of morphological features and the wavelet snake. In our scheme, two processes were applied in parallel to reduce the false-positive detections after initial nodule candida...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(02)00064-6

    authors: Keserci B,Yoshida H

    更新日期:2002-12-01 00:00:00

  • Efficient multi-modal dense field non-rigid registration: alignment of histological and section images.

    abstract::We describe a new algorithm for non-rigid registration capable of estimating a constrained dense displacement field from multi-modal image data. We applied this algorithm to capture non-rigid deformation between digital images of histological slides and digital flat-bed scanned images of cryotomed sections of the lary...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2005.04.003

    authors: du Bois d'Aische A,Craene MD,Geets X,Gregoire V,Macq B,Warfield SK

    更新日期:2005-12-01 00:00:00

  • SNR enhancement of highly-accelerated real-time cardiac MRI acquisitions based on non-local means algorithm.

    abstract::Real-time cardiac MRI appears as a promising technique to evaluate the mechanical function of the heart. However, ultra-fast MRI acquisitions come with an important signal-to-noise ratio (SNR) penalty, which drastically reduces the image quality. Hence, a real-time denoising approach would be desirable for SNR amelior...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2009.05.006

    authors: Naegel B,Cernicanu A,Hyacinthe JN,Tognolini M,Vallée JP

    更新日期:2009-08-01 00:00:00

  • Automated age estimation from MRI volumes of the hand.

    abstract::Highly relevant for both clinical and legal medicine applications, the established radiological methods for estimating unknown age in children and adolescents are based on visual examination of bone ossification in X-ray images of the hand. Our group has initiated the development of fully automatic age estimation meth...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101538

    authors: Štern D,Payer C,Urschler M

    更新日期:2019-12-01 00:00:00

  • A symbolic environment for visualizing activated foci in functional neuroimaging datasets.

    abstract::This paper presents a symbolic visualization environment known as the Corner Cube environment, which was developed to facilitate rapid examination and comparison of activated foci defined by analyses of functional neuroimaging datasets. We have performed a comparative evaluation of this environment against maximum-int...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(98)80020-0

    authors: Rehm K,Lakshminaryan K,Frutiger S,Schaper KA,Sumners DW,Strother SC,Anderson JR,Rottenberg DA

    更新日期:1998-09-01 00:00:00

  • Multi-task exclusive relationship learning for alzheimer's disease progression prediction with longitudinal data.

    abstract::Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive impairment of memory and other cognitive functions. Currently, many multi-task learning approaches have been proposed to predict the disease progression at the early stage using longitudinal data, with each task corresponding to a pa...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.01.007

    authors: Wang M,Zhang D,Shen D,Liu M

    更新日期:2019-04-01 00:00:00

  • An improved deep network for tissue microstructure estimation with uncertainty quantification.

    abstract::Deep learning based methods have improved the estimation of tissue microstructure from diffusion magnetic resonance imaging (dMRI) scans acquired with a reduced number of diffusion gradients. These methods learn the mapping from diffusion signals in a voxel or patch to tissue microstructure measures. In particular, it...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101650

    authors: Ye C,Li Y,Zeng X

    更新日期:2020-04-01 00:00:00

  • Noise reduction in diffusion MRI using non-local self-similar information in joint x-q space.

    abstract::Diffusion MRI affords valuable insights into white matter microstructures, but suffers from low signal-to-noise ratio (SNR), especially at high diffusion weighting (i.e., b-value). To avoid time-intensive repeated acquisition, post-processing algorithms are often used to reduce noise. Among existing methods, non-local...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.01.006

    authors: Chen G,Wu Y,Shen D,Yap PT

    更新日期:2019-04-01 00:00:00

  • IDRiD: Diabetic Retinopathy - Segmentation and Grading Challenge.

    abstract::Diabetic Retinopathy (DR) is the most common cause of avoidable vision loss, predominantly affecting the working-age population across the globe. Screening for DR, coupled with timely consultation and treatment, is a globally trusted policy to avoid vision loss. However, implementation of DR screening programs is chal...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101561

    authors: Porwal P,Pachade S,Kokare M,Deshmukh G,Son J,Bae W,Liu L,Wang J,Liu X,Gao L,Wu T,Xiao J,Wang F,Yin B,Wang Y,Danala G,He L,Choi YH,Lee YC,Jung SH,Li Z,Sui X,Wu J,Li X,Zhou T,Toth J,Baran A,Kori A,Ch

    更新日期:2020-01-01 00:00:00

  • Coupled parametric model for estimation of visual field tests based on OCT macular thickness maps, and vice versa, in glaucoma care.

    abstract::The current standard of care for glaucoma patients consists of functional assessment of vision via visual field (VF) testing, which is sensitive but subjective, time-consuming, and often unreliable. A new imaging technology, Fourier domain optical coherence tomography (OCT), is being introduced to assess the structura...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.05.012

    authors: Tsai A,Caprioli J,Shen LQ

    更新日期:2012-01-01 00:00:00

  • DT-MRI denoising and neuronal fiber tracking.

    abstract::Diffusion tensor imaging can provide the fundamental information required for viewing structural connectivity. However, robust and accurate acquisition and processing algorithms are needed to accurately map the nerve connectivity. In this paper, we present a novel algorithm for extracting and visualizing the fiber tra...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2003.12.001

    authors: McGraw T,Vemuri BC,Chen Y,Rao M,Mareci T

    更新日期:2004-06-01 00:00:00

  • A procedure to average 3D anatomical structures.

    abstract::Creating a feature-preserving average of three dimensional anatomical surfaces extracted from volume image data is a complex task. Unlike individual images, averages present right-left symmetry and smooth surfaces which give insight into typical proportions. Averaging multiple biological surface images requires carefu...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(00)00031-1

    authors: Subramanya K,Dean D

    更新日期:2000-12-01 00:00:00

  • Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative and critical review.

    abstract::We performed a systematic review of studies focusing on the automatic prediction of the progression of mild cognitive impairment to Alzheimer's disease (AD) dementia, and a quantitative analysis of the methodological choices impacting performance. This review included 172 articles, from which 234 experiments were extr...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101848

    authors: Ansart M,Epelbaum S,Bassignana G,Bône A,Bottani S,Cattai T,Couronné R,Faouzi J,Koval I,Louis M,Thibeau-Sutre E,Wen J,Wild A,Burgos N,Dormont D,Colliot O,Durrleman S

    更新日期:2021-01-01 00:00:00

  • Segmentation of pulmonary nodules of various densities with morphological approaches and convexity models.

    abstract::Accurate segmentation of a pulmonary nodule is an important and active area of research in medical image processing. Although many algorithms have been reported in literature for this problem, those that are applicable to various density types have not been available until recently. In this paper, we propose a new alg...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2010.08.005

    authors: Kubota T,Jerebko AK,Dewan M,Salganicoff M,Krishnan A

    更新日期:2011-02-01 00:00:00

  • HookNet: Multi-resolution convolutional neural networks for semantic segmentation in histopathology whole-slide images.

    abstract::We propose HookNet, a semantic segmentation model for histopathology whole-slide images, which combines context and details via multiple branches of encoder-decoder convolutional neural networks. Concentric patches at multiple resolutions with different fields of view, feed different branches of HookNet, and intermedi...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101890

    authors: van Rijthoven M,Balkenhol M,Siliņa K,van der Laak J,Ciompi F

    更新日期:2021-02-01 00:00:00

  • CT male pelvic organ segmentation using fully convolutional networks with boundary sensitive representation.

    abstract::Accurate segmentation of the prostate and organs at risk (e.g., bladder and rectum) in CT images is a crucial step for radiation therapy in the treatment of prostate cancer. However, it is a very challenging task due to unclear boundaries, large intra- and inter-patient shape variability, and uncertain existence of bo...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.03.003

    authors: Wang S,He K,Nie D,Zhou S,Gao Y,Shen D

    更新日期:2019-05-01 00:00:00

  • Automated size-specific dose estimates using deep learning image processing.

    abstract::An automated vendor-independent system for dose monitoring in computed tomography (CT) medical examinations involving ionizing radiation is presented in this paper. The system provides precise size-specific dose estimates (SSDE) following the American Association of Physicists in Medicine regulations. Our dose managem...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101898

    authors: Juszczyk J,Badura P,Czajkowska J,Wijata A,Andrzejewski J,Bozek P,Smolinski M,Biesok M,Sage A,Rudzki M,Wieclawek W

    更新日期:2021-02-01 00:00:00

  • Discriminative dictionary learning for abdominal multi-organ segmentation.

    abstract::An automated segmentation method is presented for multi-organ segmentation in abdominal CT images. Dictionary learning and sparse coding techniques are used in the proposed method to generate target specific priors for segmentation. The method simultaneously learns dictionaries which have reconstructive power and clas...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.04.015

    authors: Tong T,Wolz R,Wang Z,Gao Q,Misawa K,Fujiwara M,Mori K,Hajnal JV,Rueckert D

    更新日期:2015-07-01 00:00:00

  • Confhusius: a robust and fully automatic calibration method for 3D freehand ultrasound.

    abstract::This paper describes a new robust and fully automatic method for calibration of three-dimensional (3D) freehand ultrasound called Confhusius (CalibratiON for FreeHand UltraSound Imaging USage). 3D Freehand ultrasound consists in mounting a position sensor on a standard probe. The echographic B-scans can be localized i...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2004.06.021

    authors: Rousseau F,Hellier P,Barillot C

    更新日期:2005-02-01 00:00:00