Multiple instance learning for classification of dementia in brain MRI.

Abstract:

:Machine learning techniques have been widely used to detect morphological abnormalities from structural brain magnetic resonance imaging data and to support the diagnosis of neurological diseases such as dementia. In this paper, we propose to use a multiple instance learning (MIL) method in an application for the detection of Alzheimer's disease (AD) and its prodromal stage mild cognitive impairment (MCI). In our work, local intensity patches are extracted as features. However, not all the patches extracted from patients with dementia are equally affected by the disease and some of them may not be characteristic of morphology associated with the disease. Therefore, there is some ambiguity in assigning disease labels to these patches. The problem of the ambiguous training labels can be addressed by weakly supervised learning techniques such as MIL. A graph is built for each image to exploit the relationships among the patches and then to solve the MIL problem. The constructed graphs contain information about the appearances of patches and the relationships among them, which can reflect the inherent structures of images and aids the classification. Using the baseline MR images of 834 subjects from the ADNI study, the proposed method can achieve a classification accuracy of 89% between AD patients and healthy controls, and 70% between patients defined as stable MCI and progressive MCI in a leave-one-out cross validation. Compared with two state-of-the-art methods using the same dataset, the proposed method can achieve similar or improved results, providing an alternative framework for the detection and prediction of neurodegenerative diseases.

journal_name

Med Image Anal

journal_title

Medical image analysis

authors

Tong T,Wolz R,Gao Q,Guerrero R,Hajnal JV,Rueckert D,Alzheimer’s Disease Neuroimaging Initiative.

doi

10.1016/j.media.2014.04.006

subject

Has Abstract

pub_date

2014-07-01 00:00:00

pages

808-18

issue

5

eissn

1361-8415

issn

1361-8423

pii

S1361-8415(14)00060-7

journal_volume

18

pub_type

杂志文章
  • CorteXpert: A model-based method for automatic renal cortex segmentation.

    abstract::This paper introduces a model-based approach for a fully automatic delineation of kidney and cortex tissue from contrast-enhanced abdominal CT scans. The proposed framework, named CorteXpert, consists of two new strategies for kidney tissue delineation: cortex model adaptation and non-uniform graph search. CorteXpert ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2017.06.010

    authors: Xiang D,Bagci U,Jin C,Shi F,Zhu W,Yao J,Sonka M,Chen X

    更新日期:2017-12-01 00:00:00

  • Exudate detection in color retinal images for mass screening of diabetic retinopathy.

    abstract::The automatic detection of exudates in color eye fundus images is an important task in applications such as diabetic retinopathy screening. The presented work has been undertaken in the framework of the TeleOphta project, whose main objective is to automatically detect normal exams in a tele-ophthalmology network, thu...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.05.004

    authors: Zhang X,Thibault G,Decencière E,Marcotegui B,Laÿ B,Danno R,Cazuguel G,Quellec G,Lamard M,Massin P,Chabouis A,Victor Z,Erginay A

    更新日期:2014-10-01 00:00:00

  • Coupling of fluid and elastic models for biomechanical simulations of brain deformations using FEM.

    abstract::In order to improve the accuracy of image-guided neurosurgery, different biomechanical models have been developed to correct preoperative images with respect to intraoperative changes like brain shift or tumor resection. All existing biomechanical models simulate different anatomical structures by using either appropr...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(02)00059-2

    authors: Hagemann A,Rohr K,Stiehl HS

    更新日期:2002-12-01 00:00:00

  • Segmentation of lumen and outer wall of abdominal aortic aneurysms from 3D black-blood MRI with a registration based geodesic active contour model.

    abstract::Segmentation of the geometric morphology of abdominal aortic aneurysm is important for interventional planning. However, the segmentation of both the lumen and the outer wall of aneurysm in magnetic resonance (MR) image remains challenging. This study proposes a registration based segmentation methodology for efficien...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2017.05.005

    authors: Wang Y,Seguro F,Kao E,Zhang Y,Faraji F,Zhu C,Haraldsson H,Hope M,Saloner D,Liu J

    更新日期:2017-08-01 00:00:00

  • RMDL: Recalibrated multi-instance deep learning for whole slide gastric image classification.

    abstract::The whole slide histopathology images (WSIs) play a critical role in gastric cancer diagnosis. However, due to the large scale of WSIs and various sizes of the abnormal area, how to select informative regions and analyze them are quite challenging during the automatic diagnosis process. The multi-instance learning bas...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101549

    authors: Wang S,Zhu Y,Yu L,Chen H,Lin H,Wan X,Fan X,Heng PA

    更新日期:2019-12-01 00:00:00

  • Simulation of cardiac pathologies using an electromechanical biventricular model and XMR interventional imaging.

    abstract::Simulating cardiac electromechanical activity is of great interest for a better understanding of pathologies and for therapy planning. Design and validation of such models is difficult due to the lack of clinical data. XMR systems are a new type of interventional facility in which patients can be rapidly transferred b...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2005.05.003

    authors: Sermesant M,Rhode K,Sanchez-Ortiz GI,Camara O,Andriantsimiavona R,Hegde S,Rueckert D,Lambiase P,Bucknall C,Rosenthal E,Delingette H,Hill DL,Ayache N,Razavi R

    更新日期:2005-10-01 00:00:00

  • Dual-core steered non-rigid registration for multi-modal images via bi-directional image synthesis.

    abstract::In prostate cancer radiotherapy, computed tomography (CT) is widely used for dose planning purposes. However, because CT has low soft tissue contrast, it makes manual contouring difficult for major pelvic organs. In contrast, magnetic resonance imaging (MRI) provides high soft tissue contrast, which makes it ideal for...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2017.05.004

    authors: Cao X,Yang J,Gao Y,Guo Y,Wu G,Shen D

    更新日期:2017-10-01 00:00:00

  • Multi-task exclusive relationship learning for alzheimer's disease progression prediction with longitudinal data.

    abstract::Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive impairment of memory and other cognitive functions. Currently, many multi-task learning approaches have been proposed to predict the disease progression at the early stage using longitudinal data, with each task corresponding to a pa...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.01.007

    authors: Wang M,Zhang D,Shen D,Liu M

    更新日期:2019-04-01 00:00:00

  • Automated age estimation from MRI volumes of the hand.

    abstract::Highly relevant for both clinical and legal medicine applications, the established radiological methods for estimating unknown age in children and adolescents are based on visual examination of bone ossification in X-ray images of the hand. Our group has initiated the development of fully automatic age estimation meth...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101538

    authors: Štern D,Payer C,Urschler M

    更新日期:2019-12-01 00:00:00

  • Group-level cortical surface parcellation with sulcal pits labeling.

    abstract::Sulcal pits are the points of maximal depth within the folds of the cortical surface. These shape descriptors give a unique opportunity to access to a rich, fine-scale representation of the geometry and the developmental milestones of the cortical surface. However, using sulcal pits analysis at group level requires ne...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101749

    authors: Kaltenmark I,Deruelle C,Brun L,Lefèvre J,Coulon O,Auzias G

    更新日期:2020-12-01 00:00:00

  • A novel cortical thickness estimation method based on volumetric Laplace-Beltrami operator and heat kernel.

    abstract::Cortical thickness estimation in magnetic resonance imaging (MRI) is an important technique for research on brain development and neurodegenerative diseases. This paper presents a heat kernel based cortical thickness estimation algorithm, which is driven by the graph spectrum and the heat kernel theory, to capture the...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.01.005

    authors: Wang G,Zhang X,Su Q,Shi J,Caselli RJ,Wang Y,Alzheimer’s Disease Neuroimaging Initiative.

    更新日期:2015-05-01 00:00:00

  • Hierarchical performance estimation in the statistical label fusion framework.

    abstract::Label fusion is a critical step in many image segmentation frameworks (e.g., multi-atlas segmentation) as it provides a mechanism for generalizing a collection of labeled examples into a single estimate of the underlying segmentation. In the multi-label case, typical label fusion algorithms treat all labels equally - ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.06.005

    authors: Asman AJ,Landman BA

    更新日期:2014-10-01 00:00:00

  • Tongue contour tracking in dynamic ultrasound via higher-order MRFs and efficient fusion moves.

    abstract::Analyses of the human tongue motion as captured from 2D dynamic ultrasound data often requires segmentation of the mid-sagittal tongue contours. However, semi-automatic extraction of the tongue shape presents practical challenges. We approach this segmentation problem by proposing a novel higher-order Markov random fi...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2012.07.001

    authors: Tang L,Bressmann T,Hamarneh G

    更新日期:2012-12-01 00:00:00

  • PCA-based groupwise image registration for quantitative MRI.

    abstract::Quantitative magnetic resonance imaging (qMRI) is a technique for estimating quantitative tissue properties, such as the T1 and T2 relaxation times, apparent diffusion coefficient (ADC), and various perfusion measures. This estimation is achieved by acquiring multiple images with different acquisition parameters (or a...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.12.004

    authors: Huizinga W,Poot DH,Guyader JM,Klaassen R,Coolen BF,van Kranenburg M,van Geuns RJ,Uitterdijk A,Polfliet M,Vandemeulebroucke J,Leemans A,Niessen WJ,Klein S

    更新日期:2016-04-01 00:00:00

  • Comparison of atlas-based techniques for whole-body bone segmentation.

    abstract::We evaluate the accuracy of whole-body bone extraction from whole-body MR images using a number of atlas-based segmentation methods. The motivation behind this work is to find the most promising approach for the purpose of MRI-guided derivation of PET attenuation maps in whole-body PET/MRI. To this end, a variety of a...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2016.11.003

    authors: Arabi H,Zaidi H

    更新日期:2017-02-01 00:00:00

  • Sensorless freehand 3D ultrasound in real tissue: speckle decorrelation without fully developed speckle.

    abstract::It has previously been demonstrated that freehand 3D ultrasound can be acquired without a position sensor by measuring the elevational speckle decorrelation from frame to frame. However, this requires that the B-scans contain significant amounts of fully developed speckle. In this paper, we show that this condition is...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2005.08.001

    authors: Gee AH,James Housden R,Hassenpflug P,Treece GM,Prager RW

    更新日期:2006-04-01 00:00:00

  • Probe trajectory interpolation for 3D reconstruction of freehand ultrasound.

    abstract::Three-dimensional (3D) freehand ultrasound uses the acquisition of non-parallel B-scans localized in 3D by a tracking system (optic, mechanical or magnetic). Using the positions of the irregularly spaced B-scans, a regular 3D lattice volume can be reconstructed, to which conventional 3D computer vision algorithms (reg...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2007.05.002

    authors: Coupé P,Hellier P,Morandi X,Barillot C

    更新日期:2007-12-01 00:00:00

  • Automated landmarking and labeling of fully and partially scanned spinal columns in CT images.

    abstract::The spinal column is one of the most distinguishable structures in CT scans of the superior part of the human body. It is not necessary to segment the spinal column in order to use it as a frame of reference. It is sufficient to place landmarks and the appropriate anatomical labels at intervertebral disks and vertebra...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2013.07.005

    authors: Major D,Hladůvka J,Schulze F,Bühler K

    更新日期:2013-12-01 00:00:00

  • Disentangled representation learning in cardiac image analysis.

    abstract::Typically, a medical image offers spatial information on the anatomy (and pathology) modulated by imaging specific characteristics. Many imaging modalities including Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) can be interpreted in this way. We can venture further and consider that a medical image na...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101535

    authors: Chartsias A,Joyce T,Papanastasiou G,Semple S,Williams M,Newby DE,Dharmakumar R,Tsaftaris SA

    更新日期:2019-12-01 00:00:00

  • IDRiD: Diabetic Retinopathy - Segmentation and Grading Challenge.

    abstract::Diabetic Retinopathy (DR) is the most common cause of avoidable vision loss, predominantly affecting the working-age population across the globe. Screening for DR, coupled with timely consultation and treatment, is a globally trusted policy to avoid vision loss. However, implementation of DR screening programs is chal...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101561

    authors: Porwal P,Pachade S,Kokare M,Deshmukh G,Son J,Bae W,Liu L,Wang J,Liu X,Gao L,Wu T,Xiao J,Wang F,Yin B,Wang Y,Danala G,He L,Choi YH,Lee YC,Jung SH,Li Z,Sui X,Wu J,Li X,Zhou T,Toth J,Baran A,Kori A,Ch

    更新日期:2020-01-01 00:00:00

  • Involuntary eye motion correction in retinal optical coherence tomography: Hardware or software solution?

    abstract::In this paper, we review state-of-the-art techniques to correct eye motion artifacts in Optical Coherence Tomography (OCT) imaging. The methods for eye motion artifact reduction can be categorized into two major classes: (1) hardware-based techniques and (2) software-based techniques. In the first class, additional ha...

    journal_title:Medical image analysis

    pub_type: 杂志文章,评审

    doi:10.1016/j.media.2017.02.002

    authors: Baghaie A,Yu Z,D'Souza RM

    更新日期:2017-04-01 00:00:00

  • Sequential conditional reinforcement learning for simultaneous vertebral body detection and segmentation with modeling the spine anatomy.

    abstract::Accurate vertebral body (VB) detection and segmentation are critical for spine disease identification and diagnosis. Existing automatic VB detection and segmentation methods may cause false-positive results to the background tissue or inaccurate results to the desirable VB. Because they usually cannot take both the gl...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101861

    authors: Zhang D,Chen B,Li S

    更新日期:2021-01-01 00:00:00

  • Regularized siamese neural network for unsupervised outlier detection on brain multiparametric magnetic resonance imaging: Application to epilepsy lesion screening.

    abstract::In this study, we propose a novel anomaly detection model targeting subtle brain lesions in multiparametric MRI. To compensate for the lack of annotated data adequately sampling the heterogeneity of such pathologies, we cast this problem as an outlier detection problem and introduce a novel configuration of unsupervis...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101618

    authors: Alaverdyan Z,Jung J,Bouet R,Lartizien C

    更新日期:2020-02-01 00:00:00

  • Unsupervised boundary delineation of spinal neural foramina using a multi-feature and adaptive spectral segmentation.

    abstract::As a common disease in the elderly, neural foramina stenosis (NFS) brings a significantly negative impact on the quality of life due to its symptoms including pain, disability, fall risk and depression. Accurate boundary delineation is essential to the clinical diagnosis and treatment of NFS. However, existing clinica...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2016.10.009

    authors: He X,Zhang H,Landis M,Sharma M,Warrington J,Li S

    更新日期:2017-02-01 00:00:00

  • Interactive training system for interventional electrocardiology procedures.

    abstract::Recent progress in cardiac catheterization and devices has allowed the development of new therapies for severe cardiac diseases like arrhythmias and heart failure. The skills required for such interventions are very challenging to learn, and are typically acquired over several years. Virtual reality simulators may red...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2016.06.040

    authors: Talbot H,Spadoni F,Duriez C,Sermesant M,O'Neill M,Jaïs P,Cotin S,Delingette H

    更新日期:2017-01-01 00:00:00

  • Understanding the phase contrast optics to restore artifact-free microscopy images for segmentation.

    abstract::Phase contrast, a noninvasive microscopy imaging technique, is widely used to capture time-lapse images to monitor the behavior of transparent cells without staining or altering them. Due to the optical principle, phase contrast microscopy images contain artifacts such as the halo and shade-off that hinder image segme...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.12.006

    authors: Yin Z,Kanade T,Chen M

    更新日期:2012-07-01 00:00:00

  • Rubik's Cube+: A self-supervised feature learning framework for 3D medical image analysis.

    abstract::Due to the development of deep learning, an increasing number of research works have been proposed to establish automated analysis systems for 3D volumetric medical data to improve the quality of patient care. However, it is challenging to obtain a large number of annotated 3D medical data needed to train a neural net...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101746

    authors: Zhu J,Li Y,Hu Y,Ma K,Zhou SK,Zheng Y

    更新日期:2020-08-01 00:00:00

  • A gradient-based optical-flow cardiac motion estimation method for cine and tagged MR images.

    abstract::A new method is proposed to quantify the myocardial motion from both 2D C(ine)-MRI and T(agged)-MRI sequences. The tag pattern offers natural landmarks within the image that makes it possible to accurately quantify the motion within the myocardial wall. Therefore, several methods have been proposed for T-MRI. However,...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.06.016

    authors: Wang L,Clarysse P,Liu Z,Gao B,Liu W,Croisille P,Delachartre P

    更新日期:2019-10-01 00:00:00

  • CT male pelvic organ segmentation using fully convolutional networks with boundary sensitive representation.

    abstract::Accurate segmentation of the prostate and organs at risk (e.g., bladder and rectum) in CT images is a crucial step for radiation therapy in the treatment of prostate cancer. However, it is a very challenging task due to unclear boundaries, large intra- and inter-patient shape variability, and uncertain existence of bo...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.03.003

    authors: Wang S,He K,Nie D,Zhou S,Gao Y,Shen D

    更新日期:2019-05-01 00:00:00

  • Local spatio-temporal encoding of raw perfusion MRI for the prediction of final lesion in stroke.

    abstract::We address the medical image analysis issue of predicting the final lesion in stroke from early perfusion magnetic resonance imaging. The classical processing approach for the dynamical perfusion images consists in a temporal deconvolution to improve the temporal signals associated with each voxel before performing pr...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.08.008

    authors: Giacalone M,Rasti P,Debs N,Frindel C,Cho TH,Grenier E,Rousseau D

    更新日期:2018-12-01 00:00:00