Capturing intraoperative deformations: research experience at Brigham and Women's Hospital.

Abstract:

:During neurosurgical procedures the objective of the neurosurgeon is to achieve the resection of as much diseased tissue as possible while achieving the preservation of healthy brain tissue. The restricted capacity of the conventional operating room to enable the surgeon to visualize critical healthy brain structures and tumor margin has lead, over the past decade, to the development of sophisticated intraoperative imaging techniques to enhance visualization. However, both rigid motion due to patient placement and nonrigid deformations occurring as a consequence of the surgical intervention disrupt the correspondence between preoperative data used to plan surgery and the intraoperative configuration of the patient's brain. Similar challenges are faced in other interventional therapies, such as in cryoablation of the liver, or biopsy of the prostate. We have developed algorithms to model the motion of key anatomical structures and system implementations that enable us to estimate the deformation of the critical anatomy from sequences of volumetric images and to prepare updated fused visualizations of preoperative and intraoperative images at a rate compatible with surgical decision making. This paper reviews the experience at Brigham and Women's Hospital through the process of developing and applying novel algorithms for capturing intraoperative deformations in support of image guided therapy.

journal_name

Med Image Anal

journal_title

Medical image analysis

authors

Warfield SK,Haker SJ,Talos IF,Kemper CA,Weisenfeld N,Mewes AU,Goldberg-Zimring D,Zou KH,Westin CF,Wells WM,Tempany CM,Golby A,Black PM,Jolesz FA,Kikinis R

doi

10.1016/j.media.2004.11.005

subject

Has Abstract

pub_date

2005-04-01 00:00:00

pages

145-62

issue

2

eissn

1361-8415

issn

1361-8423

pii

S1361-8415(04)00071-4

journal_volume

9

pub_type

杂志文章,评审
  • A novel cortical thickness estimation method based on volumetric Laplace-Beltrami operator and heat kernel.

    abstract::Cortical thickness estimation in magnetic resonance imaging (MRI) is an important technique for research on brain development and neurodegenerative diseases. This paper presents a heat kernel based cortical thickness estimation algorithm, which is driven by the graph spectrum and the heat kernel theory, to capture the...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.01.005

    authors: Wang G,Zhang X,Su Q,Shi J,Caselli RJ,Wang Y,Alzheimer’s Disease Neuroimaging Initiative.

    更新日期:2015-05-01 00:00:00

  • Unsupervised boundary delineation of spinal neural foramina using a multi-feature and adaptive spectral segmentation.

    abstract::As a common disease in the elderly, neural foramina stenosis (NFS) brings a significantly negative impact on the quality of life due to its symptoms including pain, disability, fall risk and depression. Accurate boundary delineation is essential to the clinical diagnosis and treatment of NFS. However, existing clinica...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2016.10.009

    authors: He X,Zhang H,Landis M,Sharma M,Warrington J,Li S

    更新日期:2017-02-01 00:00:00

  • Hierarchical performance estimation in the statistical label fusion framework.

    abstract::Label fusion is a critical step in many image segmentation frameworks (e.g., multi-atlas segmentation) as it provides a mechanism for generalizing a collection of labeled examples into a single estimate of the underlying segmentation. In the multi-label case, typical label fusion algorithms treat all labels equally - ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.06.005

    authors: Asman AJ,Landman BA

    更新日期:2014-10-01 00:00:00

  • Coupling of fluid and elastic models for biomechanical simulations of brain deformations using FEM.

    abstract::In order to improve the accuracy of image-guided neurosurgery, different biomechanical models have been developed to correct preoperative images with respect to intraoperative changes like brain shift or tumor resection. All existing biomechanical models simulate different anatomical structures by using either appropr...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(02)00059-2

    authors: Hagemann A,Rohr K,Stiehl HS

    更新日期:2002-12-01 00:00:00

  • Ω-Net (Omega-Net): Fully automatic, multi-view cardiac MR detection, orientation, and segmentation with deep neural networks.

    abstract::Pixelwise segmentation of the left ventricular (LV) myocardium and the four cardiac chambers in 2-D steady state free precession (SSFP) cine sequences is an essential preprocessing step for a wide range of analyses. Variability in contrast, appearance, orientation, and placement of the heart between patients, clinical...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.05.008

    authors: Vigneault DM,Xie W,Ho CY,Bluemke DA,Noble JA

    更新日期:2018-08-01 00:00:00

  • Statistical shape model of atria, ventricles and epicardium from short- and long-axis MR images.

    abstract::We describe a new 3-D statistical shape model of the heart consisting of atria, ventricles and epicardium. The model was constructed by combining information on standard short- and long-axis cardiac MR images. In the model, the variability of the shape was modeled with PCA- and ICA-based shape models as well as with n...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2004.06.013

    authors: Lötjönen J,Kivistö S,Koikkalainen J,Smutek D,Lauerma K

    更新日期:2004-09-01 00:00:00

  • An efficient Riemannian statistical shape model using differential coordinates: With application to the classification of data from the Osteoarthritis Initiative.

    abstract::We propose a novel Riemannian framework for statistical analysis of shapes that is able to account for the nonlinearity in shape variation. By adopting a physical perspective, we introduce a differential representation that puts the local geometric variability into focus. We model these differential coordinates as ele...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2017.09.004

    authors: von Tycowicz C,Ambellan F,Mukhopadhyay A,Zachow S

    更新日期:2018-01-01 00:00:00

  • Wavelet optimization for content-based image retrieval in medical databases.

    abstract::We propose in this article a content-based image retrieval (CBIR) method for diagnosis aid in medical fields. In the proposed system, images are indexed in a generic fashion, without extracting domain-specific features: a signature is built for each image from its wavelet transform. These image signatures characterize...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2009.11.004

    authors: Quellec G,Lamard M,Cazuguel G,Cochener B,Roux C

    更新日期:2010-04-01 00:00:00

  • Deformable organisms for automatic medical image analysis.

    abstract::We introduce a new approach to medical image analysis that combines deformable model methodologies with concepts from the field of artificial life. In particular, we propose "deformable organisms", autonomous agents whose task is the automatic segmentation, labeling, and quantitative analysis of anatomical structures ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(02)00083-x

    authors: McInerney T,Hamarneh G,Shenton M,Terzopoulos D

    更新日期:2002-09-01 00:00:00

  • Hierarchical spherical deformation for cortical surface registration.

    abstract::We present hierarchical spherical deformation for a group-wise shape correspondence to address template selection bias and to minimize registration distortion. In this work, we aim at a continuous and smooth deformation field to guide accurate cortical surface registration. In conventional spherical registration metho...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.06.013

    authors: Lyu I,Kang H,Woodward ND,Styner MA,Landman BA

    更新日期:2019-10-01 00:00:00

  • Automated annotation and quantitative description of ultrasound videos of the fetal heart.

    abstract::Interpretation of ultrasound videos of the fetal heart is crucial for the antenatal diagnosis of congenital heart disease (CHD). We believe that automated image analysis techniques could make an important contribution towards improving CHD detection rates. However, to our knowledge, no previous work has been done in t...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2016.11.006

    authors: Bridge CP,Ioannou C,Noble JA

    更新日期:2017-02-01 00:00:00

  • SDAE-GAN: Enable high-dimensional pathological images in liver cancer survival prediction with a policy gradient based data augmentation method.

    abstract::High-dimensional pathological images produced by Immunohistochemistry (IHC) methods consist of many pathological indexes, which play critical roles in cancer treatment planning. However, these indexes currently cannot be utilized in survival prediction because joining them with patients' clinicopathological features (...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101640

    authors: Wu H,Gao R,Sheng YP,Chen B,Li S

    更新日期:2020-05-01 00:00:00

  • Clavicle segmentation in chest radiographs.

    abstract::Automated delineation of anatomical structures in chest radiographs is difficult due to superimposition of multiple structures. In this work an automated technique to segment the clavicles in posterior-anterior chest radiographs is presented in which three methods are combined. Pixel classification is applied in two s...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2012.06.009

    authors: Hogeweg L,Sánchez CI,de Jong PA,Maduskar P,van Ginneken B

    更新日期:2012-12-01 00:00:00

  • Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian-Eulerian PDE approach using partial volume maps.

    abstract::Accurate cortical thickness estimation is important for the study of many neurodegenerative diseases. Many approaches have been previously proposed, which can be broadly categorised as mesh-based and voxel-based. While the mesh-based approaches can potentially achieve subvoxel resolution, they usually lack the computa...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2009.07.003

    authors: Acosta O,Bourgeat P,Zuluaga MA,Fripp J,Salvado O,Ourselin S,Alzheimer's Disease Neuroimaging Initiative.

    更新日期:2009-10-01 00:00:00

  • Dynamically constructed network with error correction for accurate ventricle volume estimation.

    abstract::Automated ventricle volume estimation (AVVE) on cardiac magnetic resonance (CMR) images is very important for clinical cardiac disease diagnosis. However, current AVVE methods ignore the error correction for the estimated volume. This results in clinically intolerable ventricle volume estimation error and further lead...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101723

    authors: Luo G,Wang W,Tam C,Wang K,Cao S,Zhang H,Chen B,Li S

    更新日期:2020-08-01 00:00:00

  • Real-time image-based rigid registration of three-dimensional ultrasound.

    abstract::Registration of three-dimensional ultrasound (3DUS) volumes is necessary in several applications, such as when stitching volumes to expand the field of view or when stabilizing a temporal sequence of volumes to cancel out motion of the probe or anatomy. Current systems that register 3DUS volumes either use external tr...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.10.004

    authors: Schneider RJ,Perrin DP,Vasilyev NV,Marx GR,Del Nido PJ,Howe RD

    更新日期:2012-02-01 00:00:00

  • Image guidance in orthopaedics and traumatology: A historical perspective.

    abstract::In this note we summarize the history of computer aided surgery in orthopaedics and traumatology from the end of the nineteenth century to currently observable future trends. We concentrate on the two major components of such systems, pre-operative planning and intra-operative execution. The evolution of the necessary...

    journal_title:Medical image analysis

    pub_type: 社论

    doi:10.1016/j.media.2016.06.033

    authors: Székely G,Nolte LP

    更新日期:2016-10-01 00:00:00

  • Recovering from missing data in population imaging - Cardiac MR image imputation via conditional generative adversarial nets.

    abstract::Accurate ventricular volume measurements are the primary indicators of normal/abnor- mal cardiac function and are dependent on the Cardiac Magnetic Resonance (CMR) volumes being complete. However, missing or unusable slices owing to the presence of image artefacts such as respiratory or motion ghosting, aliasing, ring...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101812

    authors: Xia Y,Zhang L,Ravikumar N,Attar R,Piechnik SK,Neubauer S,Petersen SE,Frangi AF

    更新日期:2021-01-01 00:00:00

  • Analytical and fast Fiber Orientation Distribution reconstruction in 3D-Polarized Light Imaging.

    abstract::Three dimensional Polarized Light Imaging (3D-PLI) is an optical technique which allows mapping the spatial fiber architecture of fibrous postmortem tissues, at sub-millimeter resolutions. Here, we propose an analytical and fast approach to compute the fiber orientation distribution (FOD) from high-resolution vector d...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101760

    authors: Alimi A,Deslauriers-Gauthier S,Matuschke F,Müller A,Muenzing SEA,Axer M,Deriche R

    更新日期:2020-10-01 00:00:00

  • HookNet: Multi-resolution convolutional neural networks for semantic segmentation in histopathology whole-slide images.

    abstract::We propose HookNet, a semantic segmentation model for histopathology whole-slide images, which combines context and details via multiple branches of encoder-decoder convolutional neural networks. Concentric patches at multiple resolutions with different fields of view, feed different branches of HookNet, and intermedi...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101890

    authors: van Rijthoven M,Balkenhol M,Siliņa K,van der Laak J,Ciompi F

    更新日期:2021-02-01 00:00:00

  • Adaptive local window for level set segmentation of CT and MRI liver lesions.

    abstract::We propose a novel method, the adaptive local window, for improving level set segmentation technique. The window is estimated separately for each contour point, over iterations of the segmentation process, and for each individual object. Our method considers the object scale, the spatial texture, and the changes of th...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2017.01.002

    authors: Hoogi A,Beaulieu CF,Cunha GM,Heba E,Sirlin CB,Napel S,Rubin DL

    更新日期:2017-04-01 00:00:00

  • Groupwise registration with global-local graph shrinkage in atlas construction.

    abstract::Graph-based groupwise registration methods are widely used in atlas construction. Given a group of images, a graph is built whose nodes represent the images, and whose edges represent a geodesic path between two nodes. The distribution of images on an image manifold is explored through edge traversal in a graph. The f...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101711

    authors: Fu T,Yang J,Li Q,Ai D,Song H,Jiang Y,Wang Y,Frangi AF

    更新日期:2020-08-01 00:00:00

  • Robust registration procedures for endoscopic imaging.

    abstract::This paper presents a robust algorithm for calibration and system registration of endoscopic imaging devices. The system registration allows us to map accurately each point in the world coordinate system into the endoscope image and vice versa to obtain the world line of sight for each image pixel. The key point of ou...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2007.04.006

    authors: Konen W,Tombrock S,Scholz M

    更新日期:2007-12-01 00:00:00

  • Towards cross-modal organ translation and segmentation: A cycle- and shape-consistent generative adversarial network.

    abstract::Synthesized medical images have several important applications. For instance, they can be used as an intermedium in cross-modality image registration or used as augmented training samples to boost the generalization capability of a classifier. In this work, we propose a generic cross-modality synthesis approach with t...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.12.002

    authors: Cai J,Zhang Z,Cui L,Zheng Y,Yang L

    更新日期:2019-02-01 00:00:00

  • RMDL: Recalibrated multi-instance deep learning for whole slide gastric image classification.

    abstract::The whole slide histopathology images (WSIs) play a critical role in gastric cancer diagnosis. However, due to the large scale of WSIs and various sizes of the abnormal area, how to select informative regions and analyze them are quite challenging during the automatic diagnosis process. The multi-instance learning bas...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101549

    authors: Wang S,Zhu Y,Yu L,Chen H,Lin H,Wan X,Fan X,Heng PA

    更新日期:2019-12-01 00:00:00

  • CT male pelvic organ segmentation using fully convolutional networks with boundary sensitive representation.

    abstract::Accurate segmentation of the prostate and organs at risk (e.g., bladder and rectum) in CT images is a crucial step for radiation therapy in the treatment of prostate cancer. However, it is a very challenging task due to unclear boundaries, large intra- and inter-patient shape variability, and uncertain existence of bo...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.03.003

    authors: Wang S,He K,Nie D,Zhou S,Gao Y,Shen D

    更新日期:2019-05-01 00:00:00

  • A comprehensive study of stent visualization enhancement in X-ray images by image processing means.

    abstract::In this work we propose a comprehensive study of Digital Stent Enhancement (DSE), from the analysis of the requirements to the validation of the proposed solution. First, we derive the stent visualization requirements in the context of the clinical application and workflow. Then, we propose a DSE algorithm combining a...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.03.002

    authors: Bismuth V,Vaillant R,Funck F,Guillard N,Najman L

    更新日期:2011-08-01 00:00:00

  • Generalised coherent point drift for group-wise multi-dimensional analysis of diffusion brain MRI data.

    abstract::A probabilistic framework for registering generalised point sets comprising multiple voxel-wise data features such as positions, orientations and scalar-valued quantities, is proposed. It is employed for the analysis of magnetic resonance diffusion tensor image (DTI)-derived quantities, such as fractional anisotropy (...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.01.001

    authors: Ravikumar N,Gooya A,Beltrachini L,Frangi AF,Taylor ZA

    更新日期:2019-04-01 00:00:00

  • Involuntary eye motion correction in retinal optical coherence tomography: Hardware or software solution?

    abstract::In this paper, we review state-of-the-art techniques to correct eye motion artifacts in Optical Coherence Tomography (OCT) imaging. The methods for eye motion artifact reduction can be categorized into two major classes: (1) hardware-based techniques and (2) software-based techniques. In the first class, additional ha...

    journal_title:Medical image analysis

    pub_type: 杂志文章,评审

    doi:10.1016/j.media.2017.02.002

    authors: Baghaie A,Yu Z,D'Souza RM

    更新日期:2017-04-01 00:00:00

  • Regularized siamese neural network for unsupervised outlier detection on brain multiparametric magnetic resonance imaging: Application to epilepsy lesion screening.

    abstract::In this study, we propose a novel anomaly detection model targeting subtle brain lesions in multiparametric MRI. To compensate for the lack of annotated data adequately sampling the heterogeneity of such pathologies, we cast this problem as an outlier detection problem and introduce a novel configuration of unsupervis...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101618

    authors: Alaverdyan Z,Jung J,Bouet R,Lartizien C

    更新日期:2020-02-01 00:00:00