Coupling of fluid and elastic models for biomechanical simulations of brain deformations using FEM.

Abstract:

:In order to improve the accuracy of image-guided neurosurgery, different biomechanical models have been developed to correct preoperative images with respect to intraoperative changes like brain shift or tumor resection. All existing biomechanical models simulate different anatomical structures by using either appropriate boundary conditions or by spatially varying material parameter values, while assuming the same physical model for all anatomical structures. In general, this leads to physically implausible results, especially in the case of adjacent elastic and fluid structures. Therefore, we propose a new approach which allows to couple different physical models. In our case, we simulate rigid, elastic and fluid regions by using the appropriate physical description for each material, namely either the Navier equation or the Stokes equation. To solve the resulting differential equations, we derive a linear matrix system for each region by applying the finite element method (FEM). Thereafter, the linear matrix systems are linked together, ending up with one overall linear matrix system. Our new approach has been tested and compared to a purely linear elastic model using synthetic as well as tomographic images. It turns out from our experiments, that the integrated treatment of rigid, elastic and fluid regions improves the physical plausibility of the predicted deformation results as compared to a purely linear elastic model.

journal_name

Med Image Anal

journal_title

Medical image analysis

authors

Hagemann A,Rohr K,Stiehl HS

doi

10.1016/s1361-8415(02)00059-2

subject

Has Abstract

pub_date

2002-12-01 00:00:00

pages

375-88

issue

4

eissn

1361-8415

issn

1361-8423

pii

S1361841502000592

journal_volume

6

pub_type

杂志文章
  • Coupled parametric model for estimation of visual field tests based on OCT macular thickness maps, and vice versa, in glaucoma care.

    abstract::The current standard of care for glaucoma patients consists of functional assessment of vision via visual field (VF) testing, which is sensitive but subjective, time-consuming, and often unreliable. A new imaging technology, Fourier domain optical coherence tomography (OCT), is being introduced to assess the structura...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.05.012

    authors: Tsai A,Caprioli J,Shen LQ

    更新日期:2012-01-01 00:00:00

  • Hierarchical max-flow segmentation framework for multi-atlas segmentation with Kohonen self-organizing map based Gaussian mixture modeling.

    abstract::The incorporation of intensity, spatial, and topological information into large-scale multi-region segmentation has been a topic of ongoing research in medical image analysis. Multi-region segmentation problems, such as segmentation of brain structures, pose unique challenges in image segmentation in which regions may...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.05.005

    authors: Rajchl M,Baxter JS,McLeod AJ,Yuan J,Qiu W,Peters TM,Khan AR

    更新日期:2016-01-01 00:00:00

  • Involuntary eye motion correction in retinal optical coherence tomography: Hardware or software solution?

    abstract::In this paper, we review state-of-the-art techniques to correct eye motion artifacts in Optical Coherence Tomography (OCT) imaging. The methods for eye motion artifact reduction can be categorized into two major classes: (1) hardware-based techniques and (2) software-based techniques. In the first class, additional ha...

    journal_title:Medical image analysis

    pub_type: 杂志文章,评审

    doi:10.1016/j.media.2017.02.002

    authors: Baghaie A,Yu Z,D'Souza RM

    更新日期:2017-04-01 00:00:00

  • Sequential conditional reinforcement learning for simultaneous vertebral body detection and segmentation with modeling the spine anatomy.

    abstract::Accurate vertebral body (VB) detection and segmentation are critical for spine disease identification and diagnosis. Existing automatic VB detection and segmentation methods may cause false-positive results to the background tissue or inaccurate results to the desirable VB. Because they usually cannot take both the gl...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101861

    authors: Zhang D,Chen B,Li S

    更新日期:2021-01-01 00:00:00

  • CorteXpert: A model-based method for automatic renal cortex segmentation.

    abstract::This paper introduces a model-based approach for a fully automatic delineation of kidney and cortex tissue from contrast-enhanced abdominal CT scans. The proposed framework, named CorteXpert, consists of two new strategies for kidney tissue delineation: cortex model adaptation and non-uniform graph search. CorteXpert ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2017.06.010

    authors: Xiang D,Bagci U,Jin C,Shi F,Zhu W,Yao J,Sonka M,Chen X

    更新日期:2017-12-01 00:00:00

  • Analytical and fast Fiber Orientation Distribution reconstruction in 3D-Polarized Light Imaging.

    abstract::Three dimensional Polarized Light Imaging (3D-PLI) is an optical technique which allows mapping the spatial fiber architecture of fibrous postmortem tissues, at sub-millimeter resolutions. Here, we propose an analytical and fast approach to compute the fiber orientation distribution (FOD) from high-resolution vector d...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101760

    authors: Alimi A,Deslauriers-Gauthier S,Matuschke F,Müller A,Muenzing SEA,Axer M,Deriche R

    更新日期:2020-10-01 00:00:00

  • Dynamically constructed network with error correction for accurate ventricle volume estimation.

    abstract::Automated ventricle volume estimation (AVVE) on cardiac magnetic resonance (CMR) images is very important for clinical cardiac disease diagnosis. However, current AVVE methods ignore the error correction for the estimated volume. This results in clinically intolerable ventricle volume estimation error and further lead...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101723

    authors: Luo G,Wang W,Tam C,Wang K,Cao S,Zhang H,Chen B,Li S

    更新日期:2020-08-01 00:00:00

  • Improvement of fully automated airway segmentation on volumetric computed tomographic images using a 2.5 dimensional convolutional neural net.

    abstract::We propose a novel airway segmentation method in volumetric chest computed tomography (CT) and evaluate its performance on multiple datasets. The segmentation is performed voxel-by-voxel by a 2.5D convolutional neural net (2.5D CNN) trained in a supervised manner. To enhance the accuracy of the segmented airway tree, ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.10.006

    authors: Yun J,Park J,Yu D,Yi J,Lee M,Park HJ,Lee JG,Seo JB,Kim N

    更新日期:2019-01-01 00:00:00

  • Segmentation of the visible human for high-quality volume-based visualization.

    abstract::This article describes a combination of interactive classification and super-sampling visualization algorithms that greatly enhances the realism of 3-D reconstructions of the Visible Human data sets. Objects are classified on the basis of ellipsoidal regions in RGB space. The ellipsoids are used for super-sampling in ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(97)85001-3

    authors: Schiemann T,Tiede U,Höhne KH

    更新日期:1997-09-01 00:00:00

  • Recovering from missing data in population imaging - Cardiac MR image imputation via conditional generative adversarial nets.

    abstract::Accurate ventricular volume measurements are the primary indicators of normal/abnor- mal cardiac function and are dependent on the Cardiac Magnetic Resonance (CMR) volumes being complete. However, missing or unusable slices owing to the presence of image artefacts such as respiratory or motion ghosting, aliasing, ring...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101812

    authors: Xia Y,Zhang L,Ravikumar N,Attar R,Piechnik SK,Neubauer S,Petersen SE,Frangi AF

    更新日期:2021-01-01 00:00:00

  • Tongue contour tracking in dynamic ultrasound via higher-order MRFs and efficient fusion moves.

    abstract::Analyses of the human tongue motion as captured from 2D dynamic ultrasound data often requires segmentation of the mid-sagittal tongue contours. However, semi-automatic extraction of the tongue shape presents practical challenges. We approach this segmentation problem by proposing a novel higher-order Markov random fi...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2012.07.001

    authors: Tang L,Bressmann T,Hamarneh G

    更新日期:2012-12-01 00:00:00

  • A deep network for tissue microstructure estimation using modified LSTM units.

    abstract::Diffusion magnetic resonance imaging (dMRI) offers a unique tool for noninvasively assessing tissue microstructure. However, accurate estimation of tissue microstructure described by complicated signal models can be challenging when a reduced number of diffusion gradients are used. Deep learning based microstructure e...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.04.006

    authors: Ye C,Li X,Chen J

    更新日期:2019-07-01 00:00:00

  • Quantification of the detailed cardiac left ventricular trabecular morphogenesis in the mouse embryo.

    abstract::During embryogenesis, a mammalian heart develops from a simple tubular shape into a complex 4-chamber organ, going through four distinct phases: early primitive tubular heart, emergence of trabeculations, trabecular remodeling and development of the compact myocardium. In this paper we propose a framework for standard...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.08.001

    authors: Paun B,Bijnens B,Cook AC,Mohun TJ,Butakoff C

    更新日期:2018-10-01 00:00:00

  • Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs.

    abstract::The goal of this study is to provide a theoretical framework for accurately optimizing the segmentation energy considering all of the possible shapes generated from the level-set-based statistical shape model (SSM). The proposed algorithm solves the well-known open problem, in which a shape prior may not be optimal in...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.11.003

    authors: Saito A,Nawano S,Shimizu A

    更新日期:2016-02-01 00:00:00

  • Deformable organisms for automatic medical image analysis.

    abstract::We introduce a new approach to medical image analysis that combines deformable model methodologies with concepts from the field of artificial life. In particular, we propose "deformable organisms", autonomous agents whose task is the automatic segmentation, labeling, and quantitative analysis of anatomical structures ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(02)00083-x

    authors: McInerney T,Hamarneh G,Shenton M,Terzopoulos D

    更新日期:2002-09-01 00:00:00

  • Multiple instance learning for classification of dementia in brain MRI.

    abstract::Machine learning techniques have been widely used to detect morphological abnormalities from structural brain magnetic resonance imaging data and to support the diagnosis of neurological diseases such as dementia. In this paper, we propose to use a multiple instance learning (MIL) method in an application for the dete...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.04.006

    authors: Tong T,Wolz R,Gao Q,Guerrero R,Hajnal JV,Rueckert D,Alzheimer’s Disease Neuroimaging Initiative.

    更新日期:2014-07-01 00:00:00

  • Group-level cortical surface parcellation with sulcal pits labeling.

    abstract::Sulcal pits are the points of maximal depth within the folds of the cortical surface. These shape descriptors give a unique opportunity to access to a rich, fine-scale representation of the geometry and the developmental milestones of the cortical surface. However, using sulcal pits analysis at group level requires ne...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101749

    authors: Kaltenmark I,Deruelle C,Brun L,Lefèvre J,Coulon O,Auzias G

    更新日期:2020-12-01 00:00:00

  • Expert-validated estimation of diagnostic uncertainty for deep neural networks in diabetic retinopathy detection.

    abstract::Deep learning-based systems can achieve a diagnostic performance comparable to physicians in a variety of medical use cases including the diagnosis of diabetic retinopathy. To be useful in clinical practice, it is necessary to have well calibrated measures of the uncertainty with which these systems report their decis...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101724

    authors: Ayhan MS,Kühlewein L,Aliyeva G,Inhoffen W,Ziemssen F,Berens P

    更新日期:2020-08-01 00:00:00

  • IDRiD: Diabetic Retinopathy - Segmentation and Grading Challenge.

    abstract::Diabetic Retinopathy (DR) is the most common cause of avoidable vision loss, predominantly affecting the working-age population across the globe. Screening for DR, coupled with timely consultation and treatment, is a globally trusted policy to avoid vision loss. However, implementation of DR screening programs is chal...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101561

    authors: Porwal P,Pachade S,Kokare M,Deshmukh G,Son J,Bae W,Liu L,Wang J,Liu X,Gao L,Wu T,Xiao J,Wang F,Yin B,Wang Y,Danala G,He L,Choi YH,Lee YC,Jung SH,Li Z,Sui X,Wu J,Li X,Zhou T,Toth J,Baran A,Kori A,Ch

    更新日期:2020-01-01 00:00:00

  • CATARACTS: Challenge on automatic tool annotation for cataRACT surgery.

    abstract::Surgical tool detection is attracting increasing attention from the medical image analysis community. The goal generally is not to precisely locate tools in images, but rather to indicate which tools are being used by the surgeon at each instant. The main motivation for annotating tool usage is to design efficient sol...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.11.008

    authors: Al Hajj H,Lamard M,Conze PH,Roychowdhury S,Hu X,Maršalkaitė G,Zisimopoulos O,Dedmari MA,Zhao F,Prellberg J,Sahu M,Galdran A,Araújo T,Vo DM,Panda C,Dahiya N,Kondo S,Bian Z,Vahdat A,Bialopetravičius J,Flouty E,Qiu

    更新日期:2019-02-01 00:00:00

  • Ω-Net (Omega-Net): Fully automatic, multi-view cardiac MR detection, orientation, and segmentation with deep neural networks.

    abstract::Pixelwise segmentation of the left ventricular (LV) myocardium and the four cardiac chambers in 2-D steady state free precession (SSFP) cine sequences is an essential preprocessing step for a wide range of analyses. Variability in contrast, appearance, orientation, and placement of the heart between patients, clinical...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.05.008

    authors: Vigneault DM,Xie W,Ho CY,Bluemke DA,Noble JA

    更新日期:2018-08-01 00:00:00

  • Continuous diffusion signal, EAP and ODF estimation via Compressive Sensing in diffusion MRI.

    abstract::In this paper, we exploit the ability of Compressed Sensing (CS) to recover the whole 3D Diffusion MRI (dMRI) signal from a limited number of samples while efficiently recovering important diffusion features such as the Ensemble Average Propagator (EAP) and the Orientation Distribution Function (ODF). Some attempts to...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2013.02.010

    authors: Merlet SL,Deriche R

    更新日期:2013-07-01 00:00:00

  • An improved deep network for tissue microstructure estimation with uncertainty quantification.

    abstract::Deep learning based methods have improved the estimation of tissue microstructure from diffusion magnetic resonance imaging (dMRI) scans acquired with a reduced number of diffusion gradients. These methods learn the mapping from diffusion signals in a voxel or patch to tissue microstructure measures. In particular, it...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101650

    authors: Ye C,Li Y,Zeng X

    更新日期:2020-04-01 00:00:00

  • An information theoretic approach for non-rigid image registration using voxel class probabilities.

    abstract::We propose two information theoretic similarity measures that allow to incorporate tissue class information in non-rigid image registration. The first measure assumes that tissue class probabilities have been assigned to each of the images to be registered by prior segmentation of both of them. One image is then non-r...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2005.03.004

    authors: D'Agostino E,Maes F,Vandermeulen D,Suetens P

    更新日期:2006-06-01 00:00:00

  • Intensity non-uniformity correction in MRI: existing methods and their validation.

    abstract::Magnetic resonance imaging is a popular and powerful non-invasive imaging technique. Automated analysis has become mandatory to efficiently cope with the large amount of data generated using this modality. However, several artifacts, such as intensity non-uniformity, can degrade the quality of acquired data. Intensity...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2005.09.004

    authors: Belaroussi B,Milles J,Carme S,Zhu YM,Benoit-Cattin H

    更新日期:2006-04-01 00:00:00

  • Clavicle segmentation in chest radiographs.

    abstract::Automated delineation of anatomical structures in chest radiographs is difficult due to superimposition of multiple structures. In this work an automated technique to segment the clavicles in posterior-anterior chest radiographs is presented in which three methods are combined. Pixel classification is applied in two s...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2012.06.009

    authors: Hogeweg L,Sánchez CI,de Jong PA,Maduskar P,van Ginneken B

    更新日期:2012-12-01 00:00:00

  • A comprehensive study of stent visualization enhancement in X-ray images by image processing means.

    abstract::In this work we propose a comprehensive study of Digital Stent Enhancement (DSE), from the analysis of the requirements to the validation of the proposed solution. First, we derive the stent visualization requirements in the context of the clinical application and workflow. Then, we propose a DSE algorithm combining a...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.03.002

    authors: Bismuth V,Vaillant R,Funck F,Guillard N,Najman L

    更新日期:2011-08-01 00:00:00

  • Multimodal image registration using floating regressors in the joint intensity scatter plot.

    abstract::This paper presents a new approach for multimodal medical image registration and compares it to normalized mutual information (NMI) and the correlation ratio (CR). Like NMI and CR, the new method's measure of registration quality is based on the distribution of points in the joint intensity scatter plot (JISP); compac...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2007.12.002

    authors: Orchard J

    更新日期:2008-08-01 00:00:00

  • Luminosity and contrast normalization in retinal images.

    abstract::Retinal images are routinely acquired and assessed to provide diagnostic evidence for many important diseases, e.g. diabetes or hypertension. Because of the acquisition process, very often these images are non-uniformly illuminated and exhibit local luminosity and contrast variability. This problem may seriously affec...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2004.07.001

    authors: Foracchia M,Grisan E,Ruggeri A

    更新日期:2005-06-01 00:00:00

  • Suite of meshless algorithms for accurate computation of soft tissue deformation for surgical simulation.

    abstract::The ability to predict patient-specific soft tissue deformations is key for computer-integrated surgery systems and the core enabling technology for a new era of personalized medicine. Element-Free Galerkin (EFG) methods are better suited for solving soft tissue deformation problems than the finite element method (FEM...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.06.004

    authors: Joldes G,Bourantas G,Zwick B,Chowdhury H,Wittek A,Agrawal S,Mountris K,Hyde D,Warfield SK,Miller K

    更新日期:2019-08-01 00:00:00