Coupling of fluid and elastic models for biomechanical simulations of brain deformations using FEM.

Abstract:

:In order to improve the accuracy of image-guided neurosurgery, different biomechanical models have been developed to correct preoperative images with respect to intraoperative changes like brain shift or tumor resection. All existing biomechanical models simulate different anatomical structures by using either appropriate boundary conditions or by spatially varying material parameter values, while assuming the same physical model for all anatomical structures. In general, this leads to physically implausible results, especially in the case of adjacent elastic and fluid structures. Therefore, we propose a new approach which allows to couple different physical models. In our case, we simulate rigid, elastic and fluid regions by using the appropriate physical description for each material, namely either the Navier equation or the Stokes equation. To solve the resulting differential equations, we derive a linear matrix system for each region by applying the finite element method (FEM). Thereafter, the linear matrix systems are linked together, ending up with one overall linear matrix system. Our new approach has been tested and compared to a purely linear elastic model using synthetic as well as tomographic images. It turns out from our experiments, that the integrated treatment of rigid, elastic and fluid regions improves the physical plausibility of the predicted deformation results as compared to a purely linear elastic model.

journal_name

Med Image Anal

journal_title

Medical image analysis

authors

Hagemann A,Rohr K,Stiehl HS

doi

10.1016/s1361-8415(02)00059-2

subject

Has Abstract

pub_date

2002-12-01 00:00:00

pages

375-88

issue

4

eissn

1361-8415

issn

1361-8423

pii

S1361841502000592

journal_volume

6

pub_type

杂志文章
  • Hierarchical performance estimation in the statistical label fusion framework.

    abstract::Label fusion is a critical step in many image segmentation frameworks (e.g., multi-atlas segmentation) as it provides a mechanism for generalizing a collection of labeled examples into a single estimate of the underlying segmentation. In the multi-label case, typical label fusion algorithms treat all labels equally - ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.06.005

    authors: Asman AJ,Landman BA

    更新日期:2014-10-01 00:00:00

  • Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs.

    abstract::The goal of this study is to provide a theoretical framework for accurately optimizing the segmentation energy considering all of the possible shapes generated from the level-set-based statistical shape model (SSM). The proposed algorithm solves the well-known open problem, in which a shape prior may not be optimal in...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.11.003

    authors: Saito A,Nawano S,Shimizu A

    更新日期:2016-02-01 00:00:00

  • RMDL: Recalibrated multi-instance deep learning for whole slide gastric image classification.

    abstract::The whole slide histopathology images (WSIs) play a critical role in gastric cancer diagnosis. However, due to the large scale of WSIs and various sizes of the abnormal area, how to select informative regions and analyze them are quite challenging during the automatic diagnosis process. The multi-instance learning bas...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101549

    authors: Wang S,Zhu Y,Yu L,Chen H,Lin H,Wan X,Fan X,Heng PA

    更新日期:2019-12-01 00:00:00

  • Personalized mitral valve closure computation and uncertainty analysis from 3D echocardiography.

    abstract::Intervention planning is essential for successful Mitral Valve (MV) repair procedures. Finite-element models (FEM) of the MV could be used to achieve this goal, but the translation to the clinical domain is challenging. Many input parameters for the FEM models, such as tissue properties, are not known. In addition, on...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2016.03.011

    authors: Grbic S,Easley TF,Mansi T,Bloodworth CH,Pierce EL,Voigt I,Neumann D,Krebs J,Yuh DD,Jensen MO,Comaniciu D,Yoganathan AP

    更新日期:2017-01-01 00:00:00

  • A novel approach to 2D/3D registration of X-ray images using Grangeat's relation.

    abstract::Fast and accurate 2D/3D registration plays an important role in many applications, ranging from scientific and engineering domains all the way to medical care. Today's predominant methods are based on computationally expensive approaches, such as virtual forward or back projections, that limit the real-time applicabil...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101815

    authors: Frysch R,Pfeiffer T,Rose G

    更新日期:2021-01-01 00:00:00

  • Adaptive, template moderated, spatially varying statistical classification.

    abstract::A novel image segmentation algorithm was developed to allow the automatic segmentation of both normal and abnormal anatomy from medical images. The new algorithm is a form of spatially varying statistical classification, in which an explicit anatomical template is used to moderate the segmentation obtained by statisti...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(00)00003-7

    authors: Warfield SK,Kaus M,Jolesz FA,Kikinis R

    更新日期:2000-03-01 00:00:00

  • Disentangled representation learning in cardiac image analysis.

    abstract::Typically, a medical image offers spatial information on the anatomy (and pathology) modulated by imaging specific characteristics. Many imaging modalities including Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) can be interpreted in this way. We can venture further and consider that a medical image na...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101535

    authors: Chartsias A,Joyce T,Papanastasiou G,Semple S,Williams M,Newby DE,Dharmakumar R,Tsaftaris SA

    更新日期:2019-12-01 00:00:00

  • A novel cortical thickness estimation method based on volumetric Laplace-Beltrami operator and heat kernel.

    abstract::Cortical thickness estimation in magnetic resonance imaging (MRI) is an important technique for research on brain development and neurodegenerative diseases. This paper presents a heat kernel based cortical thickness estimation algorithm, which is driven by the graph spectrum and the heat kernel theory, to capture the...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.01.005

    authors: Wang G,Zhang X,Su Q,Shi J,Caselli RJ,Wang Y,Alzheimer’s Disease Neuroimaging Initiative.

    更新日期:2015-05-01 00:00:00

  • Hierarchical max-flow segmentation framework for multi-atlas segmentation with Kohonen self-organizing map based Gaussian mixture modeling.

    abstract::The incorporation of intensity, spatial, and topological information into large-scale multi-region segmentation has been a topic of ongoing research in medical image analysis. Multi-region segmentation problems, such as segmentation of brain structures, pose unique challenges in image segmentation in which regions may...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.05.005

    authors: Rajchl M,Baxter JS,McLeod AJ,Yuan J,Qiu W,Peters TM,Khan AR

    更新日期:2016-01-01 00:00:00

  • Objective and expert-independent validation of retinal image registration algorithms by a projective imaging distortion model.

    abstract::Fundus camera imaging of the retina is widely used to diagnose and manage ophthalmologic disorders including diabetic retinopathy, glaucoma, and age-related macular degeneration. Retinal images typically have a limited field of view, and multiple images can be joined together using an image registration technique to f...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2010.04.001

    authors: Lee S,Reinhardt JM,Cattin PC,Abràmoff MD

    更新日期:2010-08-01 00:00:00

  • Dynamic MRI reconstruction with end-to-end motion-guided network.

    abstract::Temporal correlation in dynamic magnetic resonance imaging (MRI), such as cardiac MRI, is informative and important to understand motion mechanisms of body regions. Modeling such information into the MRI reconstruction process produces temporally coherent image sequence and reduces imaging artifacts and blurring. Howe...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101901

    authors: Huang Q,Xian Y,Yang D,Qu H,Yi J,Wu P,Metaxas DN

    更新日期:2021-02-01 00:00:00

  • HookNet: Multi-resolution convolutional neural networks for semantic segmentation in histopathology whole-slide images.

    abstract::We propose HookNet, a semantic segmentation model for histopathology whole-slide images, which combines context and details via multiple branches of encoder-decoder convolutional neural networks. Concentric patches at multiple resolutions with different fields of view, feed different branches of HookNet, and intermedi...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101890

    authors: van Rijthoven M,Balkenhol M,Siliņa K,van der Laak J,Ciompi F

    更新日期:2021-02-01 00:00:00

  • A variational framework for integrating segmentation and registration through active contours.

    abstract::Traditionally, segmentation and registration have been solved as two independent problems, even though it is often the case that the solution to one impacts the solution to the other. In this paper, we introduce a geometric, variational framework that uses active contours to simultaneously segment and register feature...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(03)00004-5

    authors: Yezzi A,Zöllei L,Kapur T

    更新日期:2003-06-01 00:00:00

  • Local spatio-temporal encoding of raw perfusion MRI for the prediction of final lesion in stroke.

    abstract::We address the medical image analysis issue of predicting the final lesion in stroke from early perfusion magnetic resonance imaging. The classical processing approach for the dynamical perfusion images consists in a temporal deconvolution to improve the temporal signals associated with each voxel before performing pr...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.08.008

    authors: Giacalone M,Rasti P,Debs N,Frindel C,Cho TH,Grenier E,Rousseau D

    更新日期:2018-12-01 00:00:00

  • Gaussianization of Diffusion MRI Data Using Spatially Adaptive Filtering.

    abstract::Diffusion MRI magnitude data, typically Rician or noncentral χ distributed, is affected by the noise floor, which falsely elevates signal, reduces image contrast, and biases estimation of diffusion parameters. Noise floor can be avoided by extracting real-valued Gaussian-distributed data from complex diffusion-weighte...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101828

    authors: Liu F,Feng J,Chen G,Shen D,Yap PT

    更新日期:2021-02-01 00:00:00

  • Explainable cardiac pathology classification on cine MRI with motion characterization by semi-supervised learning of apparent flow.

    abstract::We propose a method to classify cardiac pathology based on a novel approach to extract image derived features to characterize the shape and motion of the heart. An original semi-supervised learning procedure, which makes efficient use of a large amount of non-segmented images and a small amount of images segmented man...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.06.001

    authors: Zheng Q,Delingette H,Ayache N

    更新日期:2019-08-01 00:00:00

  • Cardiac image modelling: Breadth and depth in heart disease.

    abstract::With the advent of large-scale imaging studies and big health data, and the corresponding growth in analytics, machine learning and computational image analysis methods, there are now exciting opportunities for deepening our understanding of the mechanisms and characteristics of heart disease. Two emerging fields are ...

    journal_title:Medical image analysis

    pub_type: 社论,评审

    doi:10.1016/j.media.2016.06.027

    authors: Suinesiaputra A,McCulloch AD,Nash MP,Pontre B,Young AA

    更新日期:2016-10-01 00:00:00

  • Real-time image-based rigid registration of three-dimensional ultrasound.

    abstract::Registration of three-dimensional ultrasound (3DUS) volumes is necessary in several applications, such as when stitching volumes to expand the field of view or when stabilizing a temporal sequence of volumes to cancel out motion of the probe or anatomy. Current systems that register 3DUS volumes either use external tr...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.10.004

    authors: Schneider RJ,Perrin DP,Vasilyev NV,Marx GR,Del Nido PJ,Howe RD

    更新日期:2012-02-01 00:00:00

  • A comprehensive study of stent visualization enhancement in X-ray images by image processing means.

    abstract::In this work we propose a comprehensive study of Digital Stent Enhancement (DSE), from the analysis of the requirements to the validation of the proposed solution. First, we derive the stent visualization requirements in the context of the clinical application and workflow. Then, we propose a DSE algorithm combining a...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.03.002

    authors: Bismuth V,Vaillant R,Funck F,Guillard N,Najman L

    更新日期:2011-08-01 00:00:00

  • Wavelet optimization for content-based image retrieval in medical databases.

    abstract::We propose in this article a content-based image retrieval (CBIR) method for diagnosis aid in medical fields. In the proposed system, images are indexed in a generic fashion, without extracting domain-specific features: a signature is built for each image from its wavelet transform. These image signatures characterize...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2009.11.004

    authors: Quellec G,Lamard M,Cazuguel G,Cochener B,Roux C

    更新日期:2010-04-01 00:00:00

  • Rubik's Cube+: A self-supervised feature learning framework for 3D medical image analysis.

    abstract::Due to the development of deep learning, an increasing number of research works have been proposed to establish automated analysis systems for 3D volumetric medical data to improve the quality of patient care. However, it is challenging to obtain a large number of annotated 3D medical data needed to train a neural net...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101746

    authors: Zhu J,Li Y,Hu Y,Ma K,Zhou SK,Zheng Y

    更新日期:2020-08-01 00:00:00

  • Segmentation of carpal bones from CT images using skeletally coupled deformable models.

    abstract::The in vivo investigation of joint kinematics in normal and injured wrist requires the segmentation of carpal bones from 3D (CT) images, and their registration over time. The non-uniformity of bone tissue, ranging from dense cortical bone to textured spongy bone, the irregular shape of closely packed carpal bones, sma...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(02)00065-8

    authors: Sebastian TB,Tek H,Crisco JJ,Kimia BB

    更新日期:2003-03-01 00:00:00

  • BrainSuite: an automated cortical surface identification tool.

    abstract::We describe a new magnetic resonance (MR) image analysis tool that produces cortical surface representations with spherical topology from MR images of the human brain. The tool provides a sequence of low-level operations in a single package that can produce accurate brain segmentations in clinical time. The tools incl...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(02)00054-3

    authors: Shattuck DW,Leahy RM

    更新日期:2002-06-01 00:00:00

  • Multiple hypothesis template tracking of small 3D vessel structures.

    abstract::A multiple hypothesis tracking approach to the segmentation of small 3D vessel structures is presented. By simultaneously tracking multiple hypothetical vessel trajectories, low contrast passages can be traversed, leading to an improved tracking performance in areas of low contrast. This work also contributes a novel ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2009.12.003

    authors: Friman O,Hindennach M,Kühnel C,Peitgen HO

    更新日期:2010-04-01 00:00:00

  • Global localization of 3D anatomical structures by pre-filtered Hough forests and discrete optimization.

    abstract::The accurate localization of anatomical landmarks is a challenging task, often solved by domain specific approaches. We propose a method for the automatic localization of landmarks in complex, repetitive anatomical structures. The key idea is to combine three steps: (1) a classifier for pre-filtering anatomical landma...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2013.02.004

    authors: Donner R,Menze BH,Bischof H,Langs G

    更新日期:2013-12-01 00:00:00

  • 4D hyperspherical harmonic (HyperSPHARM) representation of surface anatomy: a holistic treatment of multiple disconnected anatomical structures.

    abstract::Image-based parcellation of the brain often leads to multiple disconnected anatomical structures, which pose significant challenges for analyses of morphological shapes. Existing shape models, such as the widely used spherical harmonic (SPHARM) representation, assume topological invariance, so are unable to simultaneo...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.02.004

    authors: Pasha Hosseinbor A,Chung MK,Koay CG,Schaefer SM,van Reekum CM,Schmitz LP,Sutterer M,Alexander AL,Davidson RJ

    更新日期:2015-05-01 00:00:00

  • Robust estimation of carotid artery wall motion using the elasticity-based state-space approach.

    abstract::The dynamics of the carotid artery wall has been recognized as a valuable indicator to evaluate the status of atherosclerotic disease in the preclinical stage. However, it is still a challenge to accurately measure this dynamics from ultrasound images. This paper aims at developing an elasticity-based state-space appr...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2017.01.004

    authors: Gao Z,Xiong H,Liu X,Zhang H,Ghista D,Wu W,Li S

    更新日期:2017-04-01 00:00:00

  • Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian-Eulerian PDE approach using partial volume maps.

    abstract::Accurate cortical thickness estimation is important for the study of many neurodegenerative diseases. Many approaches have been previously proposed, which can be broadly categorised as mesh-based and voxel-based. While the mesh-based approaches can potentially achieve subvoxel resolution, they usually lack the computa...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2009.07.003

    authors: Acosta O,Bourgeat P,Zuluaga MA,Fripp J,Salvado O,Ourselin S,Alzheimer's Disease Neuroimaging Initiative.

    更新日期:2009-10-01 00:00:00

  • A work flow to build and validate patient specific left atrium electrophysiology models from catheter measurements.

    abstract::Biophysical models of the atrium provide a physically constrained framework for describing the current state of an atrium and allow predictions of how that atrium will respond to therapy. We propose a work flow to simulate patient specific electrophysiological heterogeneity from clinical data and validate the resultin...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.04.005

    authors: Corrado C,Williams S,Karim R,Plank G,O'Neill M,Niederer S

    更新日期:2018-07-01 00:00:00

  • Longitudinal segmentation of age-related white matter hyperintensities.

    abstract::Although white matter hyperintensities evolve in the course of ageing, few solutions exist to consider the lesion segmentation problem longitudinally. Based on an existing automatic lesion segmentation algorithm, a longitudinal extension is proposed. For evaluation purposes, a longitudinal lesion simulator is created ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2017.02.007

    authors: Sudre CH,Cardoso MJ,Ourselin S,Alzheimer’s Disease Neuroimaging Initiative.

    更新日期:2017-05-01 00:00:00