IDRiD: Diabetic Retinopathy - Segmentation and Grading Challenge.

Abstract:

:Diabetic Retinopathy (DR) is the most common cause of avoidable vision loss, predominantly affecting the working-age population across the globe. Screening for DR, coupled with timely consultation and treatment, is a globally trusted policy to avoid vision loss. However, implementation of DR screening programs is challenging due to the scarcity of medical professionals able to screen a growing global diabetic population at risk for DR. Computer-aided disease diagnosis in retinal image analysis could provide a sustainable approach for such large-scale screening effort. The recent scientific advances in computing capacity and machine learning approaches provide an avenue for biomedical scientists to reach this goal. Aiming to advance the state-of-the-art in automatic DR diagnosis, a grand challenge on "Diabetic Retinopathy - Segmentation and Grading" was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI - 2018). In this paper, we report the set-up and results of this challenge that is primarily based on Indian Diabetic Retinopathy Image Dataset (IDRiD). There were three principal sub-challenges: lesion segmentation, disease severity grading, and localization of retinal landmarks and segmentation. These multiple tasks in this challenge allow to test the generalizability of algorithms, and this is what makes it different from existing ones. It received a positive response from the scientific community with 148 submissions from 495 registrations effectively entered in this challenge. This paper outlines the challenge, its organization, the dataset used, evaluation methods and results of top-performing participating solutions. The top-performing approaches utilized a blend of clinical information, data augmentation, and an ensemble of models. These findings have the potential to enable new developments in retinal image analysis and image-based DR screening in particular.

journal_name

Med Image Anal

journal_title

Medical image analysis

authors

Porwal P,Pachade S,Kokare M,Deshmukh G,Son J,Bae W,Liu L,Wang J,Liu X,Gao L,Wu T,Xiao J,Wang F,Yin B,Wang Y,Danala G,He L,Choi YH,Lee YC,Jung SH,Li Z,Sui X,Wu J,Li X,Zhou T,Toth J,Baran A,Kori A,Ch

doi

10.1016/j.media.2019.101561

subject

Has Abstract

pub_date

2020-01-01 00:00:00

pages

101561

eissn

1361-8415

issn

1361-8423

pii

S1361-8415(19)30103-3

journal_volume

59

pub_type

杂志文章
  • Explainable cardiac pathology classification on cine MRI with motion characterization by semi-supervised learning of apparent flow.

    abstract::We propose a method to classify cardiac pathology based on a novel approach to extract image derived features to characterize the shape and motion of the heart. An original semi-supervised learning procedure, which makes efficient use of a large amount of non-segmented images and a small amount of images segmented man...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.06.001

    authors: Zheng Q,Delingette H,Ayache N

    更新日期:2019-08-01 00:00:00

  • Classification of hemodynamics from dynamic-susceptibility-contrast magnetic resonance (DSC-MR) brain images using noiseless independent factor analysis.

    abstract::Dynamic-susceptibility-contrast (DSC) magnetic resonance imaging records signal changes on images when the injected contrast-agent particles pass through a human brain. The temporal signal changes on different brain tissues manifest distinct blood-supply patterns which are vital for the profound analysis of cerebral h...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2007.02.002

    authors: Chou YC,Teng MM,Guo WY,Hsieh JC,Wu YT

    更新日期:2007-06-01 00:00:00

  • CT male pelvic organ segmentation using fully convolutional networks with boundary sensitive representation.

    abstract::Accurate segmentation of the prostate and organs at risk (e.g., bladder and rectum) in CT images is a crucial step for radiation therapy in the treatment of prostate cancer. However, it is a very challenging task due to unclear boundaries, large intra- and inter-patient shape variability, and uncertain existence of bo...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.03.003

    authors: Wang S,He K,Nie D,Zhou S,Gao Y,Shen D

    更新日期:2019-05-01 00:00:00

  • A comprehensive study of stent visualization enhancement in X-ray images by image processing means.

    abstract::In this work we propose a comprehensive study of Digital Stent Enhancement (DSE), from the analysis of the requirements to the validation of the proposed solution. First, we derive the stent visualization requirements in the context of the clinical application and workflow. Then, we propose a DSE algorithm combining a...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.03.002

    authors: Bismuth V,Vaillant R,Funck F,Guillard N,Najman L

    更新日期:2011-08-01 00:00:00

  • A symbolic environment for visualizing activated foci in functional neuroimaging datasets.

    abstract::This paper presents a symbolic visualization environment known as the Corner Cube environment, which was developed to facilitate rapid examination and comparison of activated foci defined by analyses of functional neuroimaging datasets. We have performed a comparative evaluation of this environment against maximum-int...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(98)80020-0

    authors: Rehm K,Lakshminaryan K,Frutiger S,Schaper KA,Sumners DW,Strother SC,Anderson JR,Rottenberg DA

    更新日期:1998-09-01 00:00:00

  • HookNet: Multi-resolution convolutional neural networks for semantic segmentation in histopathology whole-slide images.

    abstract::We propose HookNet, a semantic segmentation model for histopathology whole-slide images, which combines context and details via multiple branches of encoder-decoder convolutional neural networks. Concentric patches at multiple resolutions with different fields of view, feed different branches of HookNet, and intermedi...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101890

    authors: van Rijthoven M,Balkenhol M,Siliņa K,van der Laak J,Ciompi F

    更新日期:2021-02-01 00:00:00

  • Improvement of fully automated airway segmentation on volumetric computed tomographic images using a 2.5 dimensional convolutional neural net.

    abstract::We propose a novel airway segmentation method in volumetric chest computed tomography (CT) and evaluate its performance on multiple datasets. The segmentation is performed voxel-by-voxel by a 2.5D convolutional neural net (2.5D CNN) trained in a supervised manner. To enhance the accuracy of the segmented airway tree, ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.10.006

    authors: Yun J,Park J,Yu D,Yi J,Lee M,Park HJ,Lee JG,Seo JB,Kim N

    更新日期:2019-01-01 00:00:00

  • Improved fidelity of brain microstructure mapping from single-shell diffusion MRI.

    abstract::Diffusion weighted imaging (DWI) is sensitive to alterations in the diffusion of water molecules caused by microstructural barriers. Different microstructural compartments are characterized by differences in DWI signal. Diffusion tensor imaging conflates the signal from these compartments into a single tensor, which p...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.10.004

    authors: Taquet M,Scherrer B,Boumal N,Peters JM,Macq B,Warfield SK

    更新日期:2015-12-01 00:00:00

  • Spine detection in CT and MR using iterated marginal space learning.

    abstract::Examinations of the spinal column with both, Magnetic Resonance (MR) imaging and Computed Tomography (CT), often require a precise three-dimensional positioning, angulation and labeling of the spinal disks and the vertebrae. A fully automatic and robust approach is a prerequisite for an automated scan alignment as wel...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2012.09.007

    authors: Michael Kelm B,Wels M,Kevin Zhou S,Seifert S,Suehling M,Zheng Y,Comaniciu D

    更新日期:2013-12-01 00:00:00

  • Analytical and fast Fiber Orientation Distribution reconstruction in 3D-Polarized Light Imaging.

    abstract::Three dimensional Polarized Light Imaging (3D-PLI) is an optical technique which allows mapping the spatial fiber architecture of fibrous postmortem tissues, at sub-millimeter resolutions. Here, we propose an analytical and fast approach to compute the fiber orientation distribution (FOD) from high-resolution vector d...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101760

    authors: Alimi A,Deslauriers-Gauthier S,Matuschke F,Müller A,Muenzing SEA,Axer M,Deriche R

    更新日期:2020-10-01 00:00:00

  • Regularized siamese neural network for unsupervised outlier detection on brain multiparametric magnetic resonance imaging: Application to epilepsy lesion screening.

    abstract::In this study, we propose a novel anomaly detection model targeting subtle brain lesions in multiparametric MRI. To compensate for the lack of annotated data adequately sampling the heterogeneity of such pathologies, we cast this problem as an outlier detection problem and introduce a novel configuration of unsupervis...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101618

    authors: Alaverdyan Z,Jung J,Bouet R,Lartizien C

    更新日期:2020-02-01 00:00:00

  • PCA-based groupwise image registration for quantitative MRI.

    abstract::Quantitative magnetic resonance imaging (qMRI) is a technique for estimating quantitative tissue properties, such as the T1 and T2 relaxation times, apparent diffusion coefficient (ADC), and various perfusion measures. This estimation is achieved by acquiring multiple images with different acquisition parameters (or a...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.12.004

    authors: Huizinga W,Poot DH,Guyader JM,Klaassen R,Coolen BF,van Kranenburg M,van Geuns RJ,Uitterdijk A,Polfliet M,Vandemeulebroucke J,Leemans A,Niessen WJ,Klein S

    更新日期:2016-04-01 00:00:00

  • 4D hyperspherical harmonic (HyperSPHARM) representation of surface anatomy: a holistic treatment of multiple disconnected anatomical structures.

    abstract::Image-based parcellation of the brain often leads to multiple disconnected anatomical structures, which pose significant challenges for analyses of morphological shapes. Existing shape models, such as the widely used spherical harmonic (SPHARM) representation, assume topological invariance, so are unable to simultaneo...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.02.004

    authors: Pasha Hosseinbor A,Chung MK,Koay CG,Schaefer SM,van Reekum CM,Schmitz LP,Sutterer M,Alexander AL,Davidson RJ

    更新日期:2015-05-01 00:00:00

  • Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative and critical review.

    abstract::We performed a systematic review of studies focusing on the automatic prediction of the progression of mild cognitive impairment to Alzheimer's disease (AD) dementia, and a quantitative analysis of the methodological choices impacting performance. This review included 172 articles, from which 234 experiments were extr...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101848

    authors: Ansart M,Epelbaum S,Bassignana G,Bône A,Bottani S,Cattai T,Couronné R,Faouzi J,Koval I,Louis M,Thibeau-Sutre E,Wen J,Wild A,Burgos N,Dormont D,Colliot O,Durrleman S

    更新日期:2021-01-01 00:00:00

  • Interactive training system for interventional electrocardiology procedures.

    abstract::Recent progress in cardiac catheterization and devices has allowed the development of new therapies for severe cardiac diseases like arrhythmias and heart failure. The skills required for such interventions are very challenging to learn, and are typically acquired over several years. Virtual reality simulators may red...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2016.06.040

    authors: Talbot H,Spadoni F,Duriez C,Sermesant M,O'Neill M,Jaïs P,Cotin S,Delingette H

    更新日期:2017-01-01 00:00:00

  • Robust estimation of carotid artery wall motion using the elasticity-based state-space approach.

    abstract::The dynamics of the carotid artery wall has been recognized as a valuable indicator to evaluate the status of atherosclerotic disease in the preclinical stage. However, it is still a challenge to accurately measure this dynamics from ultrasound images. This paper aims at developing an elasticity-based state-space appr...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2017.01.004

    authors: Gao Z,Xiong H,Liu X,Zhang H,Ghista D,Wu W,Li S

    更新日期:2017-04-01 00:00:00

  • Segmentation of the visible human for high-quality volume-based visualization.

    abstract::This article describes a combination of interactive classification and super-sampling visualization algorithms that greatly enhances the realism of 3-D reconstructions of the Visible Human data sets. Objects are classified on the basis of ellipsoidal regions in RGB space. The ellipsoids are used for super-sampling in ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(97)85001-3

    authors: Schiemann T,Tiede U,Höhne KH

    更新日期:1997-09-01 00:00:00

  • Probe trajectory interpolation for 3D reconstruction of freehand ultrasound.

    abstract::Three-dimensional (3D) freehand ultrasound uses the acquisition of non-parallel B-scans localized in 3D by a tracking system (optic, mechanical or magnetic). Using the positions of the irregularly spaced B-scans, a regular 3D lattice volume can be reconstructed, to which conventional 3D computer vision algorithms (reg...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2007.05.002

    authors: Coupé P,Hellier P,Morandi X,Barillot C

    更新日期:2007-12-01 00:00:00

  • Adaptive, template moderated, spatially varying statistical classification.

    abstract::A novel image segmentation algorithm was developed to allow the automatic segmentation of both normal and abnormal anatomy from medical images. The new algorithm is a form of spatially varying statistical classification, in which an explicit anatomical template is used to moderate the segmentation obtained by statisti...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(00)00003-7

    authors: Warfield SK,Kaus M,Jolesz FA,Kikinis R

    更新日期:2000-03-01 00:00:00

  • Simulation of cardiac pathologies using an electromechanical biventricular model and XMR interventional imaging.

    abstract::Simulating cardiac electromechanical activity is of great interest for a better understanding of pathologies and for therapy planning. Design and validation of such models is difficult due to the lack of clinical data. XMR systems are a new type of interventional facility in which patients can be rapidly transferred b...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2005.05.003

    authors: Sermesant M,Rhode K,Sanchez-Ortiz GI,Camara O,Andriantsimiavona R,Hegde S,Rueckert D,Lambiase P,Bucknall C,Rosenthal E,Delingette H,Hill DL,Ayache N,Razavi R

    更新日期:2005-10-01 00:00:00

  • A spatiotemporal statistical atlas of motion for the quantification of abnormal myocardial tissue velocities.

    abstract::In this paper, we present a new method for the automatic comparison of myocardial motion patterns and the characterization of their degree of abnormality, based on a statistical atlas of motion built from a reference healthy population. Our main contribution is the computation of atlas-based indexes that quantify the ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2010.12.006

    authors: Duchateau N,De Craene M,Piella G,Silva E,Doltra A,Sitges M,Bijnens BH,Frangi AF

    更新日期:2011-06-01 00:00:00

  • Attentive neural cell instance segmentation.

    abstract::Neural cell instance segmentation, which aims at joint detection and segmentation of every neural cell in a microscopic image, is essential to many neuroscience applications. The challenge of this task involves cell adhesion, cell distortion, unclear cell contours, low-contrast cell protrusion structures, and backgrou...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.05.004

    authors: Yi J,Wu P,Jiang M,Huang Q,Hoeppner DJ,Metaxas DN

    更新日期:2019-07-01 00:00:00

  • Understanding the phase contrast optics to restore artifact-free microscopy images for segmentation.

    abstract::Phase contrast, a noninvasive microscopy imaging technique, is widely used to capture time-lapse images to monitor the behavior of transparent cells without staining or altering them. Due to the optical principle, phase contrast microscopy images contain artifacts such as the halo and shade-off that hinder image segme...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.12.006

    authors: Yin Z,Kanade T,Chen M

    更新日期:2012-07-01 00:00:00

  • Reducing annotation effort in digital pathology: A Co-Representation learning framework for classification tasks.

    abstract::Classification of digital pathology images is imperative in cancer diagnosis and prognosis. Recent advancements in deep learning and computer vision have greatly benefited the pathology workflow by developing automated solutions for classification tasks. However, the cost and time for acquiring high quality task-speci...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101859

    authors: Pati P,Foncubierta-Rodríguez A,Goksel O,Gabrani M

    更新日期:2021-01-01 00:00:00

  • Capturing intraoperative deformations: research experience at Brigham and Women's Hospital.

    abstract::During neurosurgical procedures the objective of the neurosurgeon is to achieve the resection of as much diseased tissue as possible while achieving the preservation of healthy brain tissue. The restricted capacity of the conventional operating room to enable the surgeon to visualize critical healthy brain structures ...

    journal_title:Medical image analysis

    pub_type: 杂志文章,评审

    doi:10.1016/j.media.2004.11.005

    authors: Warfield SK,Haker SJ,Talos IF,Kemper CA,Weisenfeld N,Mewes AU,Goldberg-Zimring D,Zou KH,Westin CF,Wells WM,Tempany CM,Golby A,Black PM,Jolesz FA,Kikinis R

    更新日期:2005-04-01 00:00:00

  • Semi-supervised mp-MRI data synthesis with StitchLayer and auxiliary distance maximization.

    abstract::The availability of a large amount of annotated data is critical for many medical image analysis applications, in particular for those relying on deep learning methods which are known to be data-hungry. However, annotated medical data, especially multimodal data, is often scarce and costly to obtain. In this paper, we...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101565

    authors: Wang Z,Lin Y,Cheng KT,Yang X

    更新日期:2020-01-01 00:00:00

  • Expert-validated estimation of diagnostic uncertainty for deep neural networks in diabetic retinopathy detection.

    abstract::Deep learning-based systems can achieve a diagnostic performance comparable to physicians in a variety of medical use cases including the diagnosis of diabetic retinopathy. To be useful in clinical practice, it is necessary to have well calibrated measures of the uncertainty with which these systems report their decis...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101724

    authors: Ayhan MS,Kühlewein L,Aliyeva G,Inhoffen W,Ziemssen F,Berens P

    更新日期:2020-08-01 00:00:00

  • Vessel extraction from non-fluorescein fundus images using orientation-aware detector.

    abstract::The automatic extraction of blood vessels in non-fluorescein eye fundus images is a tough task in applications such as diabetic retinopathy screening. However, vessel shapes have complex variations, and accurate modeling of retinal vascular structures is challenging. We have therefore developed a new approach to accur...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.09.002

    authors: Yin B,Li H,Sheng B,Hou X,Chen Y,Wu W,Li P,Shen R,Bao Y,Jia W

    更新日期:2015-12-01 00:00:00

  • Dynamic MRI reconstruction with end-to-end motion-guided network.

    abstract::Temporal correlation in dynamic magnetic resonance imaging (MRI), such as cardiac MRI, is informative and important to understand motion mechanisms of body regions. Modeling such information into the MRI reconstruction process produces temporally coherent image sequence and reduces imaging artifacts and blurring. Howe...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101901

    authors: Huang Q,Xian Y,Yang D,Qu H,Yi J,Wu P,Metaxas DN

    更新日期:2021-02-01 00:00:00

  • Automatic detection of over 100 anatomical landmarks in medical CT images: A framework with independent detectors and combinatorial optimization.

    abstract::An automatic detection method for 197 anatomically defined landmarks in computed tomography (CT) volumes is presented. The proposed method can handle missed landmarks caused by detection failure, a limited imaging range and other problems using a novel combinatorial optimization framework with a two-stage sampling alg...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2016.04.001

    authors: Hanaoka S,Shimizu A,Nemoto M,Nomura Y,Miki S,Yoshikawa T,Hayashi N,Ohtomo K,Masutani Y

    更新日期:2017-01-01 00:00:00