Segmentation of pulmonary nodules of various densities with morphological approaches and convexity models.

Abstract:

:Accurate segmentation of a pulmonary nodule is an important and active area of research in medical image processing. Although many algorithms have been reported in literature for this problem, those that are applicable to various density types have not been available until recently. In this paper, we propose a new algorithm that is applicable to solid, non-solid and part-solid types and solitary, vascularized, and juxtapleural types. First, the algorithm separates lung parenchyma and radiographically denser anatomical structures with coupled competition and diffusion processes. The technique tends to derive a spatially more homogeneous foreground map than an adaptive thresholding based method. Second, it locates the core of a nodule in a manner that is applicable to juxtapleural types using a transformation applied on the Euclidean distance transform of the foreground. Third, it detaches the nodule from attached structures by a region growing on the Euclidean distance map followed by a procedure to delineate the surface of the nodule based on the patterns of the region growing and distance maps. Finally, convex hull of the nodule surface intersected with the foreground constitutes the final segmentation. The performance of the technique is evaluated with two Lung Imaging Database Consortium (LIDC) data sets with 23 and 82 nodules each, and another data set with 820 nodules with manual diameter measurements. The experiments show that the algorithm is highly reliable in segmenting nodules of various types in a computationally efficient manner.

journal_name

Med Image Anal

journal_title

Medical image analysis

authors

Kubota T,Jerebko AK,Dewan M,Salganicoff M,Krishnan A

doi

10.1016/j.media.2010.08.005

subject

Has Abstract

pub_date

2011-02-01 00:00:00

pages

133-54

issue

1

eissn

1361-8415

issn

1361-8423

pii

S1361-8415(10)00109-X

journal_volume

15

pub_type

杂志文章
  • Hierarchical segmentation using equivalence test (HiSET): Application to DCE image sequences.

    abstract::Dynamical contrast enhanced (DCE) imaging allows non invasive access to tissue micro-vascularization. It appears as a promising tool to build imaging biomarkers for diagnostic, prognosis or anti-angiogenesis treatment monitoring of cancer. However, quantitative analysis of DCE image sequences suffers from low signal t...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.10.007

    authors: Liu F,Cuenod CA,Thomassin-Naggara I,Chemouny S,Rozenholc Y

    更新日期:2019-01-01 00:00:00

  • Coupling of fluid and elastic models for biomechanical simulations of brain deformations using FEM.

    abstract::In order to improve the accuracy of image-guided neurosurgery, different biomechanical models have been developed to correct preoperative images with respect to intraoperative changes like brain shift or tumor resection. All existing biomechanical models simulate different anatomical structures by using either appropr...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(02)00059-2

    authors: Hagemann A,Rohr K,Stiehl HS

    更新日期:2002-12-01 00:00:00

  • Luminosity and contrast normalization in retinal images.

    abstract::Retinal images are routinely acquired and assessed to provide diagnostic evidence for many important diseases, e.g. diabetes or hypertension. Because of the acquisition process, very often these images are non-uniformly illuminated and exhibit local luminosity and contrast variability. This problem may seriously affec...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2004.07.001

    authors: Foracchia M,Grisan E,Ruggeri A

    更新日期:2005-06-01 00:00:00

  • Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative and critical review.

    abstract::We performed a systematic review of studies focusing on the automatic prediction of the progression of mild cognitive impairment to Alzheimer's disease (AD) dementia, and a quantitative analysis of the methodological choices impacting performance. This review included 172 articles, from which 234 experiments were extr...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101848

    authors: Ansart M,Epelbaum S,Bassignana G,Bône A,Bottani S,Cattai T,Couronné R,Faouzi J,Koval I,Louis M,Thibeau-Sutre E,Wen J,Wild A,Burgos N,Dormont D,Colliot O,Durrleman S

    更新日期:2021-01-01 00:00:00

  • Segmentation of carpal bones from CT images using skeletally coupled deformable models.

    abstract::The in vivo investigation of joint kinematics in normal and injured wrist requires the segmentation of carpal bones from 3D (CT) images, and their registration over time. The non-uniformity of bone tissue, ranging from dense cortical bone to textured spongy bone, the irregular shape of closely packed carpal bones, sma...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(02)00065-8

    authors: Sebastian TB,Tek H,Crisco JJ,Kimia BB

    更新日期:2003-03-01 00:00:00

  • Evaluation of automatic neonatal brain segmentation algorithms: the NeoBrainS12 challenge.

    abstract::A number of algorithms for brain segmentation in preterm born infants have been published, but a reliable comparison of their performance is lacking. The NeoBrainS12 study (http://neobrains12.isi.uu.nl), providing three different image sets of preterm born infants, was set up to provide such a comparison. These sets a...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.11.001

    authors: Išgum I,Benders MJ,Avants B,Cardoso MJ,Counsell SJ,Gomez EF,Gui L,Hűppi PS,Kersbergen KJ,Makropoulos A,Melbourne A,Moeskops P,Mol CP,Kuklisova-Murgasova M,Rueckert D,Schnabel JA,Srhoj-Egekher V,Wu J,Wang S,de Vries

    更新日期:2015-02-01 00:00:00

  • Automatic segmentation of 3D micro-CT coronary vascular images.

    abstract::Although there are many algorithms available in the literature aimed at segmentation and model reconstruction of 3D angiographic images, many are focused on characterizing only a part of the vascular network. This study is motivated by the recent emerging prospects of whole-organ simulations in coronary hemodynamics, ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2007.06.012

    authors: Lee J,Beighley P,Ritman E,Smith N

    更新日期:2007-12-01 00:00:00

  • Analytical and fast Fiber Orientation Distribution reconstruction in 3D-Polarized Light Imaging.

    abstract::Three dimensional Polarized Light Imaging (3D-PLI) is an optical technique which allows mapping the spatial fiber architecture of fibrous postmortem tissues, at sub-millimeter resolutions. Here, we propose an analytical and fast approach to compute the fiber orientation distribution (FOD) from high-resolution vector d...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101760

    authors: Alimi A,Deslauriers-Gauthier S,Matuschke F,Müller A,Muenzing SEA,Axer M,Deriche R

    更新日期:2020-10-01 00:00:00

  • Improved fidelity of brain microstructure mapping from single-shell diffusion MRI.

    abstract::Diffusion weighted imaging (DWI) is sensitive to alterations in the diffusion of water molecules caused by microstructural barriers. Different microstructural compartments are characterized by differences in DWI signal. Diffusion tensor imaging conflates the signal from these compartments into a single tensor, which p...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.10.004

    authors: Taquet M,Scherrer B,Boumal N,Peters JM,Macq B,Warfield SK

    更新日期:2015-12-01 00:00:00

  • Robust estimation of carotid artery wall motion using the elasticity-based state-space approach.

    abstract::The dynamics of the carotid artery wall has been recognized as a valuable indicator to evaluate the status of atherosclerotic disease in the preclinical stage. However, it is still a challenge to accurately measure this dynamics from ultrasound images. This paper aims at developing an elasticity-based state-space appr...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2017.01.004

    authors: Gao Z,Xiong H,Liu X,Zhang H,Ghista D,Wu W,Li S

    更新日期:2017-04-01 00:00:00

  • Major depressive disorder identification by referenced multiset canonical correlation analysis with clinical scores.

    abstract::A novel method based on multiset canonical correlation analysis (mCCA) and linear discriminant analysis (LDA) is presented to identify the major depressive disorder (MDD). The new method comprises two parts, namely, the mCCA-rreg and sparse LDA models. The mCCA-rreg model extends the classical canonical correlation mo...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101600

    authors: Lin W,Lv D,Han Z,Dong J,Yang L

    更新日期:2020-02-01 00:00:00

  • Computerized detection of pulmonary nodules in chest radiographs based on morphological features and wavelet snake model.

    abstract::We have developed a new computer-aided diagnosis scheme for automated detection of lung nodules in digital chest radiographs based on a combination of morphological features and the wavelet snake. In our scheme, two processes were applied in parallel to reduce the false-positive detections after initial nodule candida...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(02)00064-6

    authors: Keserci B,Yoshida H

    更新日期:2002-12-01 00:00:00

  • Sensorless freehand 3D ultrasound in real tissue: speckle decorrelation without fully developed speckle.

    abstract::It has previously been demonstrated that freehand 3D ultrasound can be acquired without a position sensor by measuring the elevational speckle decorrelation from frame to frame. However, this requires that the B-scans contain significant amounts of fully developed speckle. In this paper, we show that this condition is...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2005.08.001

    authors: Gee AH,James Housden R,Hassenpflug P,Treece GM,Prager RW

    更新日期:2006-04-01 00:00:00

  • Fusion of white and gray matter geometry: a framework for investigating brain development.

    abstract::Current neuroimaging investigation of the white matter typically focuses on measurements derived from diffusion tensor imaging, such as fractional anisotropy (FA). In contrast, imaging studies of the gray matter oftentimes focus on morphological features such as cortical thickness, folding and surface curvature. As a ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.06.013

    authors: Savadjiev P,Rathi Y,Bouix S,Smith AR,Schultz RT,Verma R,Westin CF

    更新日期:2014-12-01 00:00:00

  • Towards cross-modal organ translation and segmentation: A cycle- and shape-consistent generative adversarial network.

    abstract::Synthesized medical images have several important applications. For instance, they can be used as an intermedium in cross-modality image registration or used as augmented training samples to boost the generalization capability of a classifier. In this work, we propose a generic cross-modality synthesis approach with t...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.12.002

    authors: Cai J,Zhang Z,Cui L,Zheng Y,Yang L

    更新日期:2019-02-01 00:00:00

  • Spatially variable Rician noise in magnetic resonance imaging.

    abstract::Magnetic resonance images tend to be influenced by various random factors usually referred to as "noise". The principal sources of noise and related artefacts can be divided into two types: arising from hardware (acquisition coil arrays, gradient coils, field inhomogeneity); and arising from the subject (physiological...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.12.002

    authors: Maximov II,Farrher E,Grinberg F,Shah NJ

    更新日期:2012-02-01 00:00:00

  • Statistical shape models for 3D medical image segmentation: a review.

    abstract::Statistical shape models (SSMs) have by now been firmly established as a robust tool for segmentation of medical images. While 2D models have been in use since the early 1990 s, wide-spread utilization of three-dimensional models appeared only in recent years, primarily made possible by breakthroughs in automatic dete...

    journal_title:Medical image analysis

    pub_type: 杂志文章,评审

    doi:10.1016/j.media.2009.05.004

    authors: Heimann T,Meinzer HP

    更新日期:2009-08-01 00:00:00

  • Improvement of fully automated airway segmentation on volumetric computed tomographic images using a 2.5 dimensional convolutional neural net.

    abstract::We propose a novel airway segmentation method in volumetric chest computed tomography (CT) and evaluate its performance on multiple datasets. The segmentation is performed voxel-by-voxel by a 2.5D convolutional neural net (2.5D CNN) trained in a supervised manner. To enhance the accuracy of the segmented airway tree, ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.10.006

    authors: Yun J,Park J,Yu D,Yi J,Lee M,Park HJ,Lee JG,Seo JB,Kim N

    更新日期:2019-01-01 00:00:00

  • Dynamically constructed network with error correction for accurate ventricle volume estimation.

    abstract::Automated ventricle volume estimation (AVVE) on cardiac magnetic resonance (CMR) images is very important for clinical cardiac disease diagnosis. However, current AVVE methods ignore the error correction for the estimated volume. This results in clinically intolerable ventricle volume estimation error and further lead...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101723

    authors: Luo G,Wang W,Tam C,Wang K,Cao S,Zhang H,Chen B,Li S

    更新日期:2020-08-01 00:00:00

  • An image space approach to Cartesian based parallel MR imaging with total variation regularization.

    abstract::The Cartesian parallel magnetic imaging problem is formulated variationally using a high-order penalty for coil sensitivities and a total variation like penalty for the reconstructed image. Then the optimality system is derived and numerically discretized. The objective function used is non-convex, but it possesses a ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.07.002

    authors: Keeling SL,Clason C,Hintermüller M,Knoll F,Laurain A,von Winckel G

    更新日期:2012-01-01 00:00:00

  • CorteXpert: A model-based method for automatic renal cortex segmentation.

    abstract::This paper introduces a model-based approach for a fully automatic delineation of kidney and cortex tissue from contrast-enhanced abdominal CT scans. The proposed framework, named CorteXpert, consists of two new strategies for kidney tissue delineation: cortex model adaptation and non-uniform graph search. CorteXpert ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2017.06.010

    authors: Xiang D,Bagci U,Jin C,Shi F,Zhu W,Yao J,Sonka M,Chen X

    更新日期:2017-12-01 00:00:00

  • Cardiac image modelling: Breadth and depth in heart disease.

    abstract::With the advent of large-scale imaging studies and big health data, and the corresponding growth in analytics, machine learning and computational image analysis methods, there are now exciting opportunities for deepening our understanding of the mechanisms and characteristics of heart disease. Two emerging fields are ...

    journal_title:Medical image analysis

    pub_type: 社论,评审

    doi:10.1016/j.media.2016.06.027

    authors: Suinesiaputra A,McCulloch AD,Nash MP,Pontre B,Young AA

    更新日期:2016-10-01 00:00:00

  • Noise reduction in diffusion MRI using non-local self-similar information in joint x-q space.

    abstract::Diffusion MRI affords valuable insights into white matter microstructures, but suffers from low signal-to-noise ratio (SNR), especially at high diffusion weighting (i.e., b-value). To avoid time-intensive repeated acquisition, post-processing algorithms are often used to reduce noise. Among existing methods, non-local...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.01.006

    authors: Chen G,Wu Y,Shen D,Yap PT

    更新日期:2019-04-01 00:00:00

  • Quantification of the detailed cardiac left ventricular trabecular morphogenesis in the mouse embryo.

    abstract::During embryogenesis, a mammalian heart develops from a simple tubular shape into a complex 4-chamber organ, going through four distinct phases: early primitive tubular heart, emergence of trabeculations, trabecular remodeling and development of the compact myocardium. In this paper we propose a framework for standard...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.08.001

    authors: Paun B,Bijnens B,Cook AC,Mohun TJ,Butakoff C

    更新日期:2018-10-01 00:00:00

  • Ultrasonic and elasticity imaging to model disease-induced changes in soft-tissue structure.

    abstract::Ultrasonic techniques are presented for the study of soft biological tissue structure and function. Changes in echo waveforms caused by microscopic variations in the mechanical properties of tissue can reveal disease mechanism, in vivo. On a larger scale, elasticity imaging describes the macroscopic mechanical propert...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(98)80014-5

    authors: Chaturvedi P,Insana MF,Hall TJ

    更新日期:1998-12-01 00:00:00

  • Symmetric positive semi-definite Cartesian Tensor fiber orientation distributions (CT-FOD).

    abstract::A novel method for estimating a field of fiber orientation distribution (FOD) based on signal de-convolution from a given set of diffusion weighted magnetic resonance (DW-MR) images is presented. We model the FOD by higher order Cartesian tensor basis using a parametrization that explicitly enforces the positive semi-...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2012.07.002

    authors: Weldeselassie YT,Barmpoutis A,Atkins MS

    更新日期:2012-08-01 00:00:00

  • Concurrent tumor segmentation and registration with uncertainty-based sparse non-uniform graphs.

    abstract::In this paper, we present a graph-based concurrent brain tumor segmentation and atlas to diseased patient registration framework. Both segmentation and registration problems are modeled using a unified pairwise discrete Markov Random Field model on a sparse grid superimposed to the image domain. Segmentation is addres...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.02.006

    authors: Parisot S,Wells W 3rd,Chemouny S,Duffau H,Paragios N

    更新日期:2014-05-01 00:00:00

  • Shape regression machine and efficient segmentation of left ventricle endocardium from 2D B-mode echocardiogram.

    abstract::We present a machine learning approach called shape regression machine (SRM) for efficient segmentation of an anatomic structure that exhibits a deformable shape in a medical image, e.g., left ventricle endocardial wall in an echocardiogram. The SRM achieves efficient segmentation via statistical learning of the inter...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2010.04.002

    authors: Zhou SK

    更新日期:2010-08-01 00:00:00

  • Regularized siamese neural network for unsupervised outlier detection on brain multiparametric magnetic resonance imaging: Application to epilepsy lesion screening.

    abstract::In this study, we propose a novel anomaly detection model targeting subtle brain lesions in multiparametric MRI. To compensate for the lack of annotated data adequately sampling the heterogeneity of such pathologies, we cast this problem as an outlier detection problem and introduce a novel configuration of unsupervis...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101618

    authors: Alaverdyan Z,Jung J,Bouet R,Lartizien C

    更新日期:2020-02-01 00:00:00

  • IDRiD: Diabetic Retinopathy - Segmentation and Grading Challenge.

    abstract::Diabetic Retinopathy (DR) is the most common cause of avoidable vision loss, predominantly affecting the working-age population across the globe. Screening for DR, coupled with timely consultation and treatment, is a globally trusted policy to avoid vision loss. However, implementation of DR screening programs is chal...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101561

    authors: Porwal P,Pachade S,Kokare M,Deshmukh G,Son J,Bae W,Liu L,Wang J,Liu X,Gao L,Wu T,Xiao J,Wang F,Yin B,Wang Y,Danala G,He L,Choi YH,Lee YC,Jung SH,Li Z,Sui X,Wu J,Li X,Zhou T,Toth J,Baran A,Kori A,Ch

    更新日期:2020-01-01 00:00:00