An improved deep network for tissue microstructure estimation with uncertainty quantification.

Abstract:

:Deep learning based methods have improved the estimation of tissue microstructure from diffusion magnetic resonance imaging (dMRI) scans acquired with a reduced number of diffusion gradients. These methods learn the mapping from diffusion signals in a voxel or patch to tissue microstructure measures. In particular, it is beneficial to exploit the sparsity of diffusion signals jointly in the spatial and angular domains, and the deep network can be designed by unfolding iterative processes that adaptively incorporate historical information for sparse reconstruction. However, the number of network parameters is huge in such a network design, which could increase the difficulty of network training and limit the estimation performance. In addition, existing deep learning based approaches to tissue microstructure estimation do not provide the important information about the uncertainty of estimates. In this work, we continue the exploration of tissue microstructure estimation using a deep network and seek to address these limitations. First, we explore the sparse representation of diffusion signals with a separable spatial-angular dictionary and design an improved deep network for tissue microstructure estimation. The procedure for updating the sparse code associated with the separable dictionary is derived and unfolded to construct the deep network. Second, with the formulation of sparse representation of diffusion signals, we propose to quantify the uncertainty of network outputs with a residual bootstrap strategy. Specifically, because of the sparsity constraint in the signal representation, we perform a Lasso bootstrap strategy for uncertainty quantification. Experiments were performed on brain dMRI scans with a reduced number of diffusion gradients, where the proposed method was applied to two representative biophysical models for describing tissue microstructure and compared with state-of-the-art methods of tissue microstructure estimation. The results show that our approach compares favorably with the competing methods in terms of estimation accuracy. In addition, the uncertainty measures provided by our method correlate with estimation errors and produce reasonable confidence intervals; these results suggest potential application of the proposed uncertainty quantification method in brain studies.

journal_name

Med Image Anal

journal_title

Medical image analysis

authors

Ye C,Li Y,Zeng X

doi

10.1016/j.media.2020.101650

subject

Has Abstract

pub_date

2020-04-01 00:00:00

pages

101650

eissn

1361-8415

issn

1361-8423

pii

S1361-8415(20)30017-7

journal_volume

61

pub_type

杂志文章
  • Piecewise-diffeomorphic image registration: application to the motion estimation between 3D CT lung images with sliding conditions.

    abstract::In this paper, we propose a new strategy for modelling sliding conditions when registering 3D images in a piecewise-diffeomorphic framework. More specifically, our main contribution is the development of a mathematical formalism to perform Large Deformation Diffeomorphic Metric Mapping registration with sliding condit...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2012.10.001

    authors: Risser L,Vialard FX,Baluwala HY,Schnabel JA

    更新日期:2013-02-01 00:00:00

  • Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian-Eulerian PDE approach using partial volume maps.

    abstract::Accurate cortical thickness estimation is important for the study of many neurodegenerative diseases. Many approaches have been previously proposed, which can be broadly categorised as mesh-based and voxel-based. While the mesh-based approaches can potentially achieve subvoxel resolution, they usually lack the computa...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2009.07.003

    authors: Acosta O,Bourgeat P,Zuluaga MA,Fripp J,Salvado O,Ourselin S,Alzheimer's Disease Neuroimaging Initiative.

    更新日期:2009-10-01 00:00:00

  • Pseudo-healthy synthesis with pathology disentanglement and adversarial learning.

    abstract::Pseudo-healthy synthesis is the task of creating a subject-specific 'healthy' image from a pathological one. Such images can be helpful in tasks such as anomaly detection and understanding changes induced by pathology and disease. In this paper, we present a model that is encouraged to disentangle the information of p...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101719

    authors: Xia T,Chartsias A,Tsaftaris SA

    更新日期:2020-08-01 00:00:00

  • Quantitative analysis of retinal OCT.

    abstract::Clinical acceptance of 3-D OCT retinal imaging brought rapid development of quantitative 3-D analysis of retinal layers, vasculature, retinal lesions as well as facilitated new research in retinal diseases. One of the cornerstones of many such analyses is segmentation and thickness quantification of retinal layers and...

    journal_title:Medical image analysis

    pub_type: 社论

    doi:10.1016/j.media.2016.06.001

    authors: Sonka M,Abràmoff MD

    更新日期:2016-10-01 00:00:00

  • Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm.

    abstract::In this paper an automatic atlas-based segmentation algorithm for 4D cardiac MR images is proposed. The algorithm is based on the 4D extension of the expectation maximisation (EM) algorithm. The EM algorithm uses a 4D probabilistic cardiac atlas to estimate the initial model parameters and to integrate a priori inform...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2004.06.005

    authors: Lorenzo-Valdés M,Sanchez-Ortiz GI,Elkington AG,Mohiaddin RH,Rueckert D

    更新日期:2004-09-01 00:00:00

  • Hierarchical segmentation using equivalence test (HiSET): Application to DCE image sequences.

    abstract::Dynamical contrast enhanced (DCE) imaging allows non invasive access to tissue micro-vascularization. It appears as a promising tool to build imaging biomarkers for diagnostic, prognosis or anti-angiogenesis treatment monitoring of cancer. However, quantitative analysis of DCE image sequences suffers from low signal t...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.10.007

    authors: Liu F,Cuenod CA,Thomassin-Naggara I,Chemouny S,Rozenholc Y

    更新日期:2019-01-01 00:00:00

  • Directional wavelet based features for colonic polyp classification.

    abstract::In this work, various wavelet based methods like the discrete wavelet transform, the dual-tree complex wavelet transform, the Gabor wavelet transform, curvelets, contourlets and shearlets are applied for the automated classification of colonic polyps. The methods are tested on 8 HD-endoscopic image databases, where ea...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2016.02.001

    authors: Wimmer G,Tamaki T,Tischendorf JJ,Häfner M,Yoshida S,Tanaka S,Uhl A

    更新日期:2016-07-01 00:00:00

  • Manifold modeling for brain population analysis.

    abstract::This paper describes a method for building efficient representations of large sets of brain images. Our hypothesis is that the space spanned by a set of brain images can be captured, to a close approximation, by a low-dimensional, nonlinear manifold. This paper presents a method to learn such a low-dimensional manifol...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2010.05.008

    authors: Gerber S,Tasdizen T,Thomas Fletcher P,Joshi S,Whitaker R,Alzheimers Disease Neuroimaging Initiative (ADNI).

    更新日期:2010-10-01 00:00:00

  • Global localization of 3D anatomical structures by pre-filtered Hough forests and discrete optimization.

    abstract::The accurate localization of anatomical landmarks is a challenging task, often solved by domain specific approaches. We propose a method for the automatic localization of landmarks in complex, repetitive anatomical structures. The key idea is to combine three steps: (1) a classifier for pre-filtering anatomical landma...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2013.02.004

    authors: Donner R,Menze BH,Bischof H,Langs G

    更新日期:2013-12-01 00:00:00

  • Hierarchical spherical deformation for cortical surface registration.

    abstract::We present hierarchical spherical deformation for a group-wise shape correspondence to address template selection bias and to minimize registration distortion. In this work, we aim at a continuous and smooth deformation field to guide accurate cortical surface registration. In conventional spherical registration metho...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.06.013

    authors: Lyu I,Kang H,Woodward ND,Styner MA,Landman BA

    更新日期:2019-10-01 00:00:00

  • Statistical shape model of atria, ventricles and epicardium from short- and long-axis MR images.

    abstract::We describe a new 3-D statistical shape model of the heart consisting of atria, ventricles and epicardium. The model was constructed by combining information on standard short- and long-axis cardiac MR images. In the model, the variability of the shape was modeled with PCA- and ICA-based shape models as well as with n...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2004.06.013

    authors: Lötjönen J,Kivistö S,Koikkalainen J,Smutek D,Lauerma K

    更新日期:2004-09-01 00:00:00

  • CorteXpert: A model-based method for automatic renal cortex segmentation.

    abstract::This paper introduces a model-based approach for a fully automatic delineation of kidney and cortex tissue from contrast-enhanced abdominal CT scans. The proposed framework, named CorteXpert, consists of two new strategies for kidney tissue delineation: cortex model adaptation and non-uniform graph search. CorteXpert ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2017.06.010

    authors: Xiang D,Bagci U,Jin C,Shi F,Zhu W,Yao J,Sonka M,Chen X

    更新日期:2017-12-01 00:00:00

  • Incomplete multi-modal representation learning for Alzheimer's disease diagnosis.

    abstract::Alzheimers disease (AD) is a complex neurodegenerative disease. Its early diagnosis and treatment have been a major concern of researchers. Currently, the multi-modality data representation learning of this disease is gradually becoming an emerging research field, attracting widespread attention. However, in practice,...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101953

    authors: Liu Y,Fan L,Zhang C,Zhou T,Xiao Z,Geng L,Shen D

    更新日期:2021-01-01 00:00:00

  • Towards model-based analysis of cardiac MR tagging data: relation between left ventricular shear strain and myofiber orientation.

    abstract::Many cardiac pathologies are reflected in abnormal myocardial deformation, accessible through magnetic resonance tagging (MRT). Interpretation of the MRT data is difficult, since the relation between pathology and deformation is not straightforward. Mathematical models of cardiac mechanics could be used to translate m...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2006.04.001

    authors: Ubbink SW,Bovendeerd PH,Delhaas T,Arts T,van de Vosse FN

    更新日期:2006-08-01 00:00:00

  • An information theoretic approach for non-rigid image registration using voxel class probabilities.

    abstract::We propose two information theoretic similarity measures that allow to incorporate tissue class information in non-rigid image registration. The first measure assumes that tissue class probabilities have been assigned to each of the images to be registered by prior segmentation of both of them. One image is then non-r...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2005.03.004

    authors: D'Agostino E,Maes F,Vandermeulen D,Suetens P

    更新日期:2006-06-01 00:00:00

  • Computerized detection of pulmonary nodules in chest radiographs based on morphological features and wavelet snake model.

    abstract::We have developed a new computer-aided diagnosis scheme for automated detection of lung nodules in digital chest radiographs based on a combination of morphological features and the wavelet snake. In our scheme, two processes were applied in parallel to reduce the false-positive detections after initial nodule candida...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(02)00064-6

    authors: Keserci B,Yoshida H

    更新日期:2002-12-01 00:00:00

  • Ultrasonic and elasticity imaging to model disease-induced changes in soft-tissue structure.

    abstract::Ultrasonic techniques are presented for the study of soft biological tissue structure and function. Changes in echo waveforms caused by microscopic variations in the mechanical properties of tissue can reveal disease mechanism, in vivo. On a larger scale, elasticity imaging describes the macroscopic mechanical propert...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(98)80014-5

    authors: Chaturvedi P,Insana MF,Hall TJ

    更新日期:1998-12-01 00:00:00

  • Automatic detection of over 100 anatomical landmarks in medical CT images: A framework with independent detectors and combinatorial optimization.

    abstract::An automatic detection method for 197 anatomically defined landmarks in computed tomography (CT) volumes is presented. The proposed method can handle missed landmarks caused by detection failure, a limited imaging range and other problems using a novel combinatorial optimization framework with a two-stage sampling alg...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2016.04.001

    authors: Hanaoka S,Shimizu A,Nemoto M,Nomura Y,Miki S,Yoshikawa T,Hayashi N,Ohtomo K,Masutani Y

    更新日期:2017-01-01 00:00:00

  • Unsupervised boundary delineation of spinal neural foramina using a multi-feature and adaptive spectral segmentation.

    abstract::As a common disease in the elderly, neural foramina stenosis (NFS) brings a significantly negative impact on the quality of life due to its symptoms including pain, disability, fall risk and depression. Accurate boundary delineation is essential to the clinical diagnosis and treatment of NFS. However, existing clinica...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2016.10.009

    authors: He X,Zhang H,Landis M,Sharma M,Warrington J,Li S

    更新日期:2017-02-01 00:00:00

  • A symbolic environment for visualizing activated foci in functional neuroimaging datasets.

    abstract::This paper presents a symbolic visualization environment known as the Corner Cube environment, which was developed to facilitate rapid examination and comparison of activated foci defined by analyses of functional neuroimaging datasets. We have performed a comparative evaluation of this environment against maximum-int...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(98)80020-0

    authors: Rehm K,Lakshminaryan K,Frutiger S,Schaper KA,Sumners DW,Strother SC,Anderson JR,Rottenberg DA

    更新日期:1998-09-01 00:00:00

  • Super-Resolved q-Space deep learning with uncertainty quantification.

    abstract::Diffusion magnetic resonance imaging (dMRI) provides a noninvasive method for measuring brain tissue microstructure. q-Space deep learning(q-DL) methods have been developed to accurately estimate tissue microstructure from dMRI scans acquired with a reduced number of diffusion gradients. In these methods, deep network...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101885

    authors: Qin Y,Liu Z,Liu C,Li Y,Zeng X,Ye C

    更新日期:2021-01-01 00:00:00

  • Cardiac function estimation from MRI using a heart model and data assimilation: advances and difficulties.

    abstract::In this paper, we present a framework to estimate local ventricular myocardium contractility using clinical MRI, a heart model and data assimilation. First, we build a generic anatomical model of the ventricles including muscle fibre orientations and anatomical subdivisions. Then, this model is deformed to fit a clini...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2006.04.002

    authors: Sermesant M,Moireau P,Camara O,Sainte-Marie J,Andriantsimiavona R,Cimrman R,Hill DL,Chapelle D,Razavi R

    更新日期:2006-08-01 00:00:00

  • Evaluation of algorithms for Multi-Modality Whole Heart Segmentation: An open-access grand challenge.

    abstract::Knowledge of whole heart anatomy is a prerequisite for many clinical applications. Whole heart segmentation (WHS), which delineates substructures of the heart, can be very valuable for modeling and analysis of the anatomy and functions of the heart. However, automating this segmentation can be challenging due to the l...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101537

    authors: Zhuang X,Li L,Payer C,Štern D,Urschler M,Heinrich MP,Oster J,Wang C,Smedby Ö,Bian C,Yang X,Heng PA,Mortazi A,Bagci U,Yang G,Sun C,Galisot G,Ramel JY,Brouard T,Tong Q,Si W,Liao X,Zeng G,Shi Z,Zheng G,Wang

    更新日期:2019-12-01 00:00:00

  • A work flow to build and validate patient specific left atrium electrophysiology models from catheter measurements.

    abstract::Biophysical models of the atrium provide a physically constrained framework for describing the current state of an atrium and allow predictions of how that atrium will respond to therapy. We propose a work flow to simulate patient specific electrophysiological heterogeneity from clinical data and validate the resultin...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.04.005

    authors: Corrado C,Williams S,Karim R,Plank G,O'Neill M,Niederer S

    更新日期:2018-07-01 00:00:00

  • Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs.

    abstract::The goal of this study is to provide a theoretical framework for accurately optimizing the segmentation energy considering all of the possible shapes generated from the level-set-based statistical shape model (SSM). The proposed algorithm solves the well-known open problem, in which a shape prior may not be optimal in...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.11.003

    authors: Saito A,Nawano S,Shimizu A

    更新日期:2016-02-01 00:00:00

  • Noise reduction in diffusion MRI using non-local self-similar information in joint x-q space.

    abstract::Diffusion MRI affords valuable insights into white matter microstructures, but suffers from low signal-to-noise ratio (SNR), especially at high diffusion weighting (i.e., b-value). To avoid time-intensive repeated acquisition, post-processing algorithms are often used to reduce noise. Among existing methods, non-local...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.01.006

    authors: Chen G,Wu Y,Shen D,Yap PT

    更新日期:2019-04-01 00:00:00

  • Automated age estimation from MRI volumes of the hand.

    abstract::Highly relevant for both clinical and legal medicine applications, the established radiological methods for estimating unknown age in children and adolescents are based on visual examination of bone ossification in X-ray images of the hand. Our group has initiated the development of fully automatic age estimation meth...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101538

    authors: Štern D,Payer C,Urschler M

    更新日期:2019-12-01 00:00:00

  • Stochastic finite element framework for simultaneous estimation of cardiac kinematic functions and material parameters.

    abstract::A stochastic finite element framework is presented for the simultaneous estimation of the cardiac kinematic functions and material model parameters from periodic medical image sequences. While existing biomechanics studies of the myocardial material constitutive laws have assumed known tissue kinematic measurements, a...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(03)00066-5

    authors: Shi P,Liu H

    更新日期:2003-12-01 00:00:00

  • Automated localization of breast cancer in DCE-MRI.

    abstract::Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is increasingly being used for the detection and diagnosis of breast cancer. Compared to mammography, DCE-MRI provides higher sensitivity, however its specificity is variable. Moreover, DCE-MRI data analysis is time consuming and depends on reader expertis...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.12.001

    authors: Gubern-Mérida A,Martí R,Melendez J,Hauth JL,Mann RM,Karssemeijer N,Platel B

    更新日期:2015-02-01 00:00:00

  • Non-invasive estimation of relative pressure in turbulent flow using virtual work-energy.

    abstract::Vascular pressure differences are established risk markers for a number of cardiovascular diseases. Relative pressures are, however, often driven by turbulence-induced flow fluctuations, where conventional non-invasive methods may yield inaccurate results. Recently, we proposed a novel method for non-turbulent flows, ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101627

    authors: Marlevi D,Ha H,Dillon-Murphy D,Fernandes JF,Fovargue D,Colarieti-Tosti M,Larsson M,Lamata P,Figueroa CA,Ebbers T,Nordsletten DA

    更新日期:2020-02-01 00:00:00