Towards model-based analysis of cardiac MR tagging data: relation between left ventricular shear strain and myofiber orientation.

Abstract:

:Many cardiac pathologies are reflected in abnormal myocardial deformation, accessible through magnetic resonance tagging (MRT). Interpretation of the MRT data is difficult, since the relation between pathology and deformation is not straightforward. Mathematical models of cardiac mechanics could be used to translate measured abnormalities into the underlying pathology, but, so far, they even fail to correctly simulate myocardial deformation in the healthy heart. In this study we investigated to what extent (1) our previously published three-dimensional finite element model of cardiac mechanics [Kerckhoffs, R.C.P., Bovendeerd, P.H.M., Kotte, J.C.S., Prinzen, F.W., Smits, K., Arts, T., 2003. Homogeneity of cardiac contraction despite physiological asynchrony of depolarization: a model study. Ann. Biomed. Eng. 31, 536-547] can simulate measured cardiac deformation, and (2) discrepancies between strains in model and experiment are related to the choice of the myofiber orientation in the model. To this end, we measured midwall circumferential strain E(cc) and circumferential-radial shear strain E(cr) in three healthy subjects using MRT. E(cc) as computed in the model agreed well with measured E(cc). Computed E(cr) differed significantly from measured E(cr). The time course of E(cr) was found to be very sensitive to the choice of the myofiber orientation, in particular to the choice of the transverse angle. Discrepancies between circumferential-radial shear strain in model and experiment were reduced strongly by increasing the transverse angle in the original model by 25%.

journal_name

Med Image Anal

journal_title

Medical image analysis

authors

Ubbink SW,Bovendeerd PH,Delhaas T,Arts T,van de Vosse FN

doi

10.1016/j.media.2006.04.001

subject

Has Abstract

pub_date

2006-08-01 00:00:00

pages

632-41

issue

4

eissn

1361-8415

issn

1361-8423

pii

S1361-8415(06)00032-6

journal_volume

10

pub_type

杂志文章
  • Deformable image registration by combining uncertainty estimates from supervoxel belief propagation.

    abstract::Discrete optimisation strategies have a number of advantages over their continuous counterparts for deformable registration of medical images. For example: it is not necessary to compute derivatives of the similarity term; dense sampling of the search space reduces the risk of becoming trapped in local optima; and (in...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.09.005

    authors: Heinrich MP,Simpson IJ,Papież BW,Brady SM,Schnabel JA

    更新日期:2016-01-01 00:00:00

  • Manifold modeling for brain population analysis.

    abstract::This paper describes a method for building efficient representations of large sets of brain images. Our hypothesis is that the space spanned by a set of brain images can be captured, to a close approximation, by a low-dimensional, nonlinear manifold. This paper presents a method to learn such a low-dimensional manifol...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2010.05.008

    authors: Gerber S,Tasdizen T,Thomas Fletcher P,Joshi S,Whitaker R,Alzheimers Disease Neuroimaging Initiative (ADNI).

    更新日期:2010-10-01 00:00:00

  • Large deformation diffeomorphic registration of diffusion-weighted imaging data.

    abstract::Registration plays an important role in group analysis of diffusion-weighted imaging (DWI) data. It can be used to build a reference anatomy for investigating structural variation or tracking changes in white matter. Unlike traditional scalar image registration where spatial alignment is the only focus, registration o...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.06.012

    authors: Zhang P,Niethammer M,Shen D,Yap PT

    更新日期:2014-12-01 00:00:00

  • Accurate estimation of retinal vessel width using bagged decision trees and an extended multiresolution Hermite model.

    abstract::We present an algorithm estimating the width of retinal vessels in fundus camera images. The algorithm uses a novel parametric surface model of the cross-sectional intensities of vessels, and ensembles of bagged decision trees to estimate the local width from the parameters of the best-fit surface. We report comparati...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2013.07.006

    authors: Lupaşcu CA,Tegolo D,Trucco E

    更新日期:2013-12-01 00:00:00

  • LinSEM: Linearizing segmentation evaluation metrics for medical images.

    abstract::Numerous algorithms are available for segmenting medical images. Empirical discrepancy metrics are commonly used in measuring the similarity or difference between segmentations by algorithms and "true" segmentations. However, one issue with the commonly used metrics is that the same metric value often represents diffe...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101601

    authors: Li J,Udupa JK,Tong Y,Wang L,Torigian DA

    更新日期:2020-02-01 00:00:00

  • Bayesian principal geodesic analysis for estimating intrinsic diffeomorphic image variability.

    abstract::In this paper, we present a generative Bayesian approach for estimating the low-dimensional latent space of diffeomorphic shape variability in a population of images. We develop a latent variable model for principal geodesic analysis (PGA) that provides a probabilistic framework for factor analysis in the space of dif...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.04.009

    authors: Zhang M,Fletcher PT

    更新日期:2015-10-01 00:00:00

  • Abdominal multi-organ segmentation with organ-attention networks and statistical fusion.

    abstract::Accurate and robust segmentation of abdominal organs on CT is essential for many clinical applications such as computer-aided diagnosis and computer-aided surgery. But this task is challenging due to the weak boundaries of organs, the complexity of the background, and the variable sizes of different organs. To address...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.04.005

    authors: Wang Y,Zhou Y,Shen W,Park S,Fishman EK,Yuille AL

    更新日期:2019-07-01 00:00:00

  • Advances and challenges in deformable image registration: From image fusion to complex motion modelling.

    abstract::Over the past 20 years, the field of medical image registration has significantly advanced from multi-modal image fusion to highly non-linear, deformable image registration for a wide range of medical applications and imaging modalities, involving the compensation and analysis of physiological organ motion or of tissu...

    journal_title:Medical image analysis

    pub_type: 社论

    doi:10.1016/j.media.2016.06.031

    authors: Schnabel JA,Heinrich MP,Papież BW,Brady SJM

    更新日期:2016-10-01 00:00:00

  • Automated landmarking and labeling of fully and partially scanned spinal columns in CT images.

    abstract::The spinal column is one of the most distinguishable structures in CT scans of the superior part of the human body. It is not necessary to segment the spinal column in order to use it as a frame of reference. It is sufficient to place landmarks and the appropriate anatomical labels at intervertebral disks and vertebra...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2013.07.005

    authors: Major D,Hladůvka J,Schulze F,Bühler K

    更新日期:2013-12-01 00:00:00

  • Adaptive, template moderated, spatially varying statistical classification.

    abstract::A novel image segmentation algorithm was developed to allow the automatic segmentation of both normal and abnormal anatomy from medical images. The new algorithm is a form of spatially varying statistical classification, in which an explicit anatomical template is used to moderate the segmentation obtained by statisti...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(00)00003-7

    authors: Warfield SK,Kaus M,Jolesz FA,Kikinis R

    更新日期:2000-03-01 00:00:00

  • 4D hyperspherical harmonic (HyperSPHARM) representation of surface anatomy: a holistic treatment of multiple disconnected anatomical structures.

    abstract::Image-based parcellation of the brain often leads to multiple disconnected anatomical structures, which pose significant challenges for analyses of morphological shapes. Existing shape models, such as the widely used spherical harmonic (SPHARM) representation, assume topological invariance, so are unable to simultaneo...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2015.02.004

    authors: Pasha Hosseinbor A,Chung MK,Koay CG,Schaefer SM,van Reekum CM,Schmitz LP,Sutterer M,Alexander AL,Davidson RJ

    更新日期:2015-05-01 00:00:00

  • Pseudo-healthy synthesis with pathology disentanglement and adversarial learning.

    abstract::Pseudo-healthy synthesis is the task of creating a subject-specific 'healthy' image from a pathological one. Such images can be helpful in tasks such as anomaly detection and understanding changes induced by pathology and disease. In this paper, we present a model that is encouraged to disentangle the information of p...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101719

    authors: Xia T,Chartsias A,Tsaftaris SA

    更新日期:2020-08-01 00:00:00

  • Involuntary eye motion correction in retinal optical coherence tomography: Hardware or software solution?

    abstract::In this paper, we review state-of-the-art techniques to correct eye motion artifacts in Optical Coherence Tomography (OCT) imaging. The methods for eye motion artifact reduction can be categorized into two major classes: (1) hardware-based techniques and (2) software-based techniques. In the first class, additional ha...

    journal_title:Medical image analysis

    pub_type: 杂志文章,评审

    doi:10.1016/j.media.2017.02.002

    authors: Baghaie A,Yu Z,D'Souza RM

    更新日期:2017-04-01 00:00:00

  • Spine detection in CT and MR using iterated marginal space learning.

    abstract::Examinations of the spinal column with both, Magnetic Resonance (MR) imaging and Computed Tomography (CT), often require a precise three-dimensional positioning, angulation and labeling of the spinal disks and the vertebrae. A fully automatic and robust approach is a prerequisite for an automated scan alignment as wel...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2012.09.007

    authors: Michael Kelm B,Wels M,Kevin Zhou S,Seifert S,Suehling M,Zheng Y,Comaniciu D

    更新日期:2013-12-01 00:00:00

  • Deformable organisms for automatic medical image analysis.

    abstract::We introduce a new approach to medical image analysis that combines deformable model methodologies with concepts from the field of artificial life. In particular, we propose "deformable organisms", autonomous agents whose task is the automatic segmentation, labeling, and quantitative analysis of anatomical structures ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(02)00083-x

    authors: McInerney T,Hamarneh G,Shenton M,Terzopoulos D

    更新日期:2002-09-01 00:00:00

  • MR to ultrasound registration for image-guided prostate interventions.

    abstract::A deformable registration method is described that enables automatic alignment of magnetic resonance (MR) and 3D transrectal ultrasound (TRUS) images of the prostate gland. The method employs a novel "model-to-image" registration approach in which a deformable model of the gland surface, derived from an MR image, is r...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2010.11.003

    authors: Hu Y,Ahmed HU,Taylor Z,Allen C,Emberton M,Hawkes D,Barratt D

    更新日期:2012-04-01 00:00:00

  • Quantification of the detailed cardiac left ventricular trabecular morphogenesis in the mouse embryo.

    abstract::During embryogenesis, a mammalian heart develops from a simple tubular shape into a complex 4-chamber organ, going through four distinct phases: early primitive tubular heart, emergence of trabeculations, trabecular remodeling and development of the compact myocardium. In this paper we propose a framework for standard...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.08.001

    authors: Paun B,Bijnens B,Cook AC,Mohun TJ,Butakoff C

    更新日期:2018-10-01 00:00:00

  • Dynamic MRI reconstruction with end-to-end motion-guided network.

    abstract::Temporal correlation in dynamic magnetic resonance imaging (MRI), such as cardiac MRI, is informative and important to understand motion mechanisms of body regions. Modeling such information into the MRI reconstruction process produces temporally coherent image sequence and reduces imaging artifacts and blurring. Howe...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101901

    authors: Huang Q,Xian Y,Yang D,Qu H,Yi J,Wu P,Metaxas DN

    更新日期:2021-02-01 00:00:00

  • Computerized detection of pulmonary nodules in chest radiographs based on morphological features and wavelet snake model.

    abstract::We have developed a new computer-aided diagnosis scheme for automated detection of lung nodules in digital chest radiographs based on a combination of morphological features and the wavelet snake. In our scheme, two processes were applied in parallel to reduce the false-positive detections after initial nodule candida...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(02)00064-6

    authors: Keserci B,Yoshida H

    更新日期:2002-12-01 00:00:00

  • Super-Resolved q-Space deep learning with uncertainty quantification.

    abstract::Diffusion magnetic resonance imaging (dMRI) provides a noninvasive method for measuring brain tissue microstructure. q-Space deep learning(q-DL) methods have been developed to accurately estimate tissue microstructure from dMRI scans acquired with a reduced number of diffusion gradients. In these methods, deep network...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101885

    authors: Qin Y,Liu Z,Liu C,Li Y,Zeng X,Ye C

    更新日期:2021-01-01 00:00:00

  • An automated pipeline for cortical sulcal fundi extraction.

    abstract::In this paper, we propose a novel automated pipeline for extraction of sulcal fundi from triangulated cortical surfaces. This method consists of four consecutive steps. Firstly, we adopt a finite difference method to estimate principal curvatures, principal directions and curvature derivatives, along the principal dir...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2010.01.005

    authors: Li G,Guo L,Nie J,Liu T

    更新日期:2010-06-01 00:00:00

  • Coupling of fluid and elastic models for biomechanical simulations of brain deformations using FEM.

    abstract::In order to improve the accuracy of image-guided neurosurgery, different biomechanical models have been developed to correct preoperative images with respect to intraoperative changes like brain shift or tumor resection. All existing biomechanical models simulate different anatomical structures by using either appropr...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(02)00059-2

    authors: Hagemann A,Rohr K,Stiehl HS

    更新日期:2002-12-01 00:00:00

  • Equilibrated warping: Finite element image registration with finite strain equilibrium gap regularization.

    abstract::In this paper, we propose a novel continuum finite strain formulation of the equilibrium gap regularization for image registration. The equilibrium gap regularization essentially penalizes any deviation from the solution of a hyperelastic body in equilibrium with arbitrary loads prescribed at the boundary. It thus rep...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.07.007

    authors: Genet M,Stoeck CT,von Deuster C,Lee LC,Kozerke S

    更新日期:2018-12-01 00:00:00

  • An image space approach to Cartesian based parallel MR imaging with total variation regularization.

    abstract::The Cartesian parallel magnetic imaging problem is formulated variationally using a high-order penalty for coil sensitivities and a total variation like penalty for the reconstructed image. Then the optimality system is derived and numerically discretized. The objective function used is non-convex, but it possesses a ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.07.002

    authors: Keeling SL,Clason C,Hintermüller M,Knoll F,Laurain A,von Winckel G

    更新日期:2012-01-01 00:00:00

  • DT-MRI denoising and neuronal fiber tracking.

    abstract::Diffusion tensor imaging can provide the fundamental information required for viewing structural connectivity. However, robust and accurate acquisition and processing algorithms are needed to accurately map the nerve connectivity. In this paper, we present a novel algorithm for extracting and visualizing the fiber tra...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2003.12.001

    authors: McGraw T,Vemuri BC,Chen Y,Rao M,Mareci T

    更新日期:2004-06-01 00:00:00

  • Context specific descriptors for tracking deforming tissue.

    abstract::In minimally invasive surgery, deployment of motion compensation, dynamic active constraints and adaptive intra-operative guidance require accurate estimation of deforming tissue in 3D. To this end, the use of vision-based techniques is advantageous in that it does not require the integration of additional hardware to...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.02.010

    authors: Mountney P,Yang GZ

    更新日期:2012-04-01 00:00:00

  • Disentangled representation learning in cardiac image analysis.

    abstract::Typically, a medical image offers spatial information on the anatomy (and pathology) modulated by imaging specific characteristics. Many imaging modalities including Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) can be interpreted in this way. We can venture further and consider that a medical image na...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101535

    authors: Chartsias A,Joyce T,Papanastasiou G,Semple S,Williams M,Newby DE,Dharmakumar R,Tsaftaris SA

    更新日期:2019-12-01 00:00:00

  • A novel deformation method for fast simulation of biological tissue formed by fibers and fluid.

    abstract::This paper presents a new approach to the simulation of soft tissues deformation suitable for real time computation, particularly intriguing for medical applications. The approach implements a quasi-static solution for elastic global deformations of objects filled with fluid and fibers, which can be a good approximati...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2012.04.002

    authors: Costa IF

    更新日期:2012-07-01 00:00:00

  • Cardiac function estimation from MRI using a heart model and data assimilation: advances and difficulties.

    abstract::In this paper, we present a framework to estimate local ventricular myocardium contractility using clinical MRI, a heart model and data assimilation. First, we build a generic anatomical model of the ventricles including muscle fibre orientations and anatomical subdivisions. Then, this model is deformed to fit a clini...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2006.04.002

    authors: Sermesant M,Moireau P,Camara O,Sainte-Marie J,Andriantsimiavona R,Cimrman R,Hill DL,Chapelle D,Razavi R

    更新日期:2006-08-01 00:00:00

  • CHAOS Challenge - combined (CT-MR) healthy abdominal organ segmentation.

    abstract::Segmentation of abdominal organs has been a comprehensive, yet unresolved, research field for many years. In the last decade, intensive developments in deep learning (DL) introduced new state-of-the-art segmentation systems. Despite outperforming the overall accuracy of existing systems, the effects of DL model proper...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101950

    authors: Kavur AE,Gezer NS,Barış M,Aslan S,Conze PH,Groza V,Pham DD,Chatterjee S,Ernst P,Özkan S,Baydar B,Lachinov D,Han S,Pauli J,Isensee F,Perkonigg M,Sathish R,Rajan R,Sheet D,Dovletov G,Speck O,Nürnberger A,Maier-H

    更新日期:2020-12-25 00:00:00