The 14-3-3 proteins: cellular regulators of plant metabolism.

Abstract:

:Signal transduction and enzyme regulation are known to occur via phosphorylation, but it is becoming increasingly apparent that phosphorylation might be only a necessary preamble to regulation. In many cases, the phosphorylated target protein must associate with a specialized adapter protein, known as 14-3-3, to complete the regulatory action. There are several prominent examples of 14-3-3 participation in plant regulatory events, including the regulation of plasma membrane H+-ATPase, nitrate reductase and sucrose phosphate synthase. However, emerging data on 14-3-3s in the nucleus might extend the roles for 14-3-3s well beyond the regulation of cytoplasmic enzymes.

journal_name

Trends Plant Sci

journal_title

Trends in plant science

authors

Chung HJ,Sehnke PC,Ferl RJ

doi

10.1016/s1360-1385(99)01462-4

subject

Has Abstract

pub_date

1999-09-01 00:00:00

pages

367-371

issue

9

eissn

1360-1385

issn

1878-4372

pii

S1360-1385(99)01462-4

journal_volume

4

pub_type

杂志文章
  • A State Factor Model for Ecosystem Carbon-Water Relations.

    abstract::With increasing calls for improving terrestrial carbon sequestration and sustainable water use, scientists are faced with the challenge of predicting changes in carbon-water relations from organisms to landscapes. We propose an integrative framework to help in answering basic and applied questions pertaining to couple...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2020.02.007

    authors: Maxwell TM,Silva LCR

    更新日期:2020-07-01 00:00:00

  • How the deposition of cellulose microfibrils builds cell wall architecture.

    abstract::Cell walls, the extracytoplasmic matrices of plant cells, consist of an ordered array of cellulose microfibrils embedded in a matrix of polysaccharides and glycoproteins. This construction is reminiscent of steel rods in reinforced concrete. How a cell organizes these ordered textures around itself, creating its own d...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/s1360-1385(99)01507-1

    authors: Emons AM,Mulder BM

    更新日期:2000-01-01 00:00:00

  • Capturing diversity in the cereals: many options but little promiscuity.

    abstract::It is generally recognized by geneticists and plant breeders alike that there is a need to further improve the ability to capture and manipulate genetic diversity. The effective harnessing of diversity in traditional breeding programmes is limited and, therefore, it is vital that meiotic recombination can be manipulat...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2006.12.002

    authors: Able JA,Langridge P,Milligan AS

    更新日期:2007-02-01 00:00:00

  • Molecular mechanisms of self-recognition in Brassica self-incompatibility.

    abstract::Plants have mechanisms to promote outbreeding and thereby to increase their genetic diversity. In species that are self-incompatible, self-pollen is rejected by the stigma. This mechanism has been the subject of intense study for many years and, in the past two years, significant progress has been made in identifying ...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/s1360-1385(00)01759-3

    authors: Brugière N,Rothstein SJ,Cui Y

    更新日期:2000-10-01 00:00:00

  • From central-peripheral to adaxial-abaxial.

    abstract::Higher plants are constructed of three organs--the stem, the root and the leaf. The stem and the root have two axes, apical-basal and central-peripheral, which cross orthogonally. Leaves develop from the shoot apical meristem as lateral organs that have three different axes, apical-basal, adaxial-abaxial and right-lef...

    journal_title:Trends in plant science

    pub_type: 新闻

    doi:10.1016/s1360-1385(01)02155-0

    authors: Tasaka M

    更新日期:2001-12-01 00:00:00

  • Diversity in Plant Breeding: A New Conceptual Framework.

    abstract::Faced with an accelerating rate of environmental change and the associated need for a more sustainable, low-input agriculture, the urgent new challenge for crop science is to find ways to introduce greater diversity to cropping systems. However, there is a dearth of generic formalism in programs seeking to diversify c...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2015.07.007

    authors: Litrico I,Violle C

    更新日期:2015-10-01 00:00:00

  • Pedospheric Microbial Nitric Oxide Production Challenges Root Symbioses.

    abstract::Recent studies indicate that a multitude of microbial processes are involved in nitric oxide production and consumptions in the pedosphere. Due to its dual function as a toxic metabolite and signaling compound, we speculate that this pedospheric nitric oxide of microbial origin can significantly interact with mycorrhi...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/j.tplants.2020.11.007

    authors: Hu B,Flemetakis E,Rennenberg H

    更新日期:2021-02-01 00:00:00

  • The Plant Mitochondrial Transportome: Balancing Metabolic Demands with Energetic Constraints.

    abstract::In plants, mitochondrial function is associated with hundreds of metabolic reactions. To facilitate these reactions, charged substrates and cofactors move across the charge-impermeable inner mitochondrial membrane via specialized transporters and must work cooperatively with the electrochemical gradient which is essen...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2016.04.003

    authors: Lee CP,Millar AH

    更新日期:2016-08-01 00:00:00

  • The Algal Revolution.

    abstract::Algae are (mostly) photosynthetic eukaryotes that occupy multiple branches of the tree of life, and are vital for planet function and health. In this review, we highlight a transformative period in studies of the evolution and functioning of this extraordinary group of organisms and their potential for novel applicati...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2017.05.005

    authors: Brodie J,Chan CX,De Clerck O,Cock JM,Coelho SM,Gachon C,Grossman AR,Mock T,Raven JA,Smith AG,Yoon HS,Bhattacharya D

    更新日期:2017-08-01 00:00:00

  • The protein acetylome and the regulation of metabolism.

    abstract::Acetyl-coenzyme A (CoA) is a central metabolite involved in numerous anabolic and catabolic pathways, as well as in protein acetylation. Beyond histones, a large number of metabolic enzymes are acetylated in both animal and bacteria, and the protein acetylome is now emerging in plants. Protein acetylation is influence...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2012.03.008

    authors: Xing S,Poirier Y

    更新日期:2012-07-01 00:00:00

  • Gibberellin Localization and Transport in Plants.

    abstract::Distribution patterns and finely-tuned concentration gradients of plant hormones govern plant growth and development. Gibberellin (GA) is a plant hormone regulating key processes in plants; many of them are of significant agricultural importance, such as seed germination, root and shoot elongation, flowering, and frui...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2018.02.005

    authors: Binenbaum J,Weinstain R,Shani E

    更新日期:2018-05-01 00:00:00

  • Illuminating the molecular basis of gene-for-gene resistance; Arabidopsis thaliana RRS1-R and its interaction with Ralstonia solanacearum popP2.

    abstract::Elucidation of the molecular basis of gene-for-gene interactions between disease-resistance (R) genes and pathogen avirulence (avr) genes has been a Holy Grail of plant pathology for the past decade. Recent studies of the R-avr interaction between RRS1-R and popP2 by Laurent Deslandes et al. provide new insights and s...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/j.tplants.2003.11.002

    authors: Lahaye T

    更新日期:2004-01-01 00:00:00

  • Symbiotically modified organisms: nontoxic fungal endophytes in grasses.

    abstract::We propose that symbiotically modified organisms (SMOs) should be taken into account in sustainable agriculture. In this opinion article, we present the results of a meta-analysis of the literature, with a particular focus on the potential of SMOs in forage and turf grass production, to determine the impact of endophy...

    journal_title:Trends in plant science

    pub_type: 杂志文章,meta分析

    doi:10.1016/j.tplants.2013.03.003

    authors: Gundel PE,Pérez LI,Helander M,Saikkonen K

    更新日期:2013-08-01 00:00:00

  • Age-related changes in photosynthesis of woody plants.

    abstract::Woody peoffnials do not appear to go through a defined senescence phase but do have predictable developmental stages. Reduced photosynthesis and stomatal conductance have been reported at all developmental transitions, although some studies have shown the opposite. What causes these changes and why do results differ a...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/s1360-1385(00)01691-5

    authors: Bond BJ

    更新日期:2000-08-01 00:00:00

  • What lies beneath: underlying assumptions in bioimage analysis.

    abstract::The need for plant image analysis tools is established and has led to a steadily expanding literature and set of software tools. This is encouraging, but raises a question: how does a plant scientist with no detailed knowledge or experience of image analysis methods choose the right tool(s) for the task at hand, or sa...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2012.07.003

    authors: Pridmore TP,French AP,Pound MP

    更新日期:2012-12-01 00:00:00

  • Evolution of jasmonate and salicylate signal crosstalk.

    abstract::The evolution of land plants approximately 470 million years ago created a new adaptive zone for natural enemies (attackers) of plants. In response to attack, plants evolved highly effective, inducible defense systems. Two plant hormones modulating inducible defenses are salicylic acid (SA) and jasmonic acid (JA). Cur...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2012.02.010

    authors: Thaler JS,Humphrey PT,Whiteman NK

    更新日期:2012-05-01 00:00:00

  • PIF3 Integrates Light and Low Temperature Signaling.

    abstract::PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) is a basic ​helix-loop-helix transcription factor with critical roles in light signaling. Recent work identified PIF3 as a negative regulator of arabidopsis (Arabidopsis thaliana) freezing tolerance. ...

    journal_title:Trends in plant science

    pub_type: 评论,杂志文章

    doi:10.1016/j.tplants.2017.12.003

    authors: Lin L,Liu X,Yin R

    更新日期:2018-02-01 00:00:00

  • Arabidopsis seed mucilage secretory cells: regulation and dynamics.

    abstract::Seeds from various angiosperm species produce polysaccharide mucilage facilitating germination and, therefore, conferring major evolutionary advantages. The seed epidermal mucilage secretory cells (MSCs) undergo numerous tightly controlled changes of their extracellular matrixes (ECMs) throughout seed development. Rec...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2015.04.008

    authors: Francoz E,Ranocha P,Burlat V,Dunand C

    更新日期:2015-08-01 00:00:00

  • Novel Stress in Plants by Altering the Photoperiod.

    abstract::Recent work has shown that changing the photoperiod induces stress in Arabidopsis thaliana. It has particularly dramatic consequences in cytokinin-deficient plants and clock mutants. Here, we argue that studying the impact of an altered photoperiod will provide novel insights into the circadian clock, factors regulati...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/j.tplants.2017.09.005

    authors: Nitschke S,Cortleven A,Schmülling T

    更新日期:2017-11-01 00:00:00

  • Respiratory chain supercomplexes in the plant mitochondrial membrane.

    abstract::The intricate, heavily folded inner membrane of mitochondria houses the respiratory chain complexes. These complexes, together with the ATP synthase complex, are responsible for energy production, which is stored as ATP. The structure of the individual membrane-bound protein components has been well characterized. In ...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2006.03.007

    authors: Dudkina NV,Heinemeyer J,Sunderhaus S,Boekema EJ,Braun HP

    更新日期:2006-05-01 00:00:00

  • The role of arbuscular mycorrhizas in reducing soil nutrient loss.

    abstract::Substantial amounts of nutrients are lost from soils via leaching and as gaseous emissions. These losses can be environmentally damaging and expensive in terms of lost agricultural production. Plants have evolved many traits to optimize nutrient acquisition, including the formation of arbuscular mycorrhizas (AM), asso...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2015.03.004

    authors: Cavagnaro TR,Bender SF,Asghari HR,Heijden MGAV

    更新日期:2015-05-01 00:00:00

  • Alternative splicing of transcripts encoding Toll-like plant resistance proteins - what's the functional relevance to innate immunity?

    abstract::Innate immunity in plants and animals shares many structural and functional homologies, which suggests an ancient origin of cellular defense mechanisms in both kingdoms. Pathogen sensing in animal innate immunity is mediated by Toll-like receptors (TLRs). These receptors have TIR (Toll/interleukin-1 receptor) domains ...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/s1360-1385(02)02311-7

    authors: Jordan T,Schornack S,Lahaye T

    更新日期:2002-09-01 00:00:00

  • Directed Evolution of Plant Processes: Towards a Green (r)Evolution?

    abstract::Directed evolution (DE) is a powerful approach for generating proteins with new chemical and physical properties. It mimics the principles of Darwinian evolution by imposing selective pressure on a large population of molecules harboring random genetic variation in DNA, such that sequences with specific desirable prop...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2019.08.004

    authors: Gionfriddo M,De Gara L,Loreto F

    更新日期:2019-11-01 00:00:00

  • Aluminium tolerance in plants and the complexing role of organic acids.

    abstract::The aluminium cation Al(3+) is toxic to many plants at micromolar concentrations. A range of plant species has evolved mechanisms that enable them to grow on acid soils where toxic concentrations of Al(3+) can limit plant growth. Organic acids play a central role in these aluminium tolerance mechanisms. Some plants de...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/s1360-1385(01)01961-6

    authors: Ma JF,Ryan PR,Delhaize E

    更新日期:2001-06-01 00:00:00

  • Evolutionary history of plant microRNAs.

    abstract::microRNAs (miRNAs) are short noncoding regulatory genes that perform important roles in plant development and physiology. With the increasing power of next generation sequencing technologies and the development of bioinformatic tools, there has been a dramatic increase in the number of studies surveying the miRNAomes ...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/j.tplants.2013.11.008

    authors: Taylor RS,Tarver JE,Hiscock SJ,Donoghue PC

    更新日期:2014-03-01 00:00:00

  • Green or red: what stops the traffic in the tetrapyrrole pathway?

    abstract::Regulation of tetrapyrrole biosynthesis is crucial to plant metabolism. The two pivotal control points are formation of the initial precursor, 5-aminolaevulinic acid (ALA), and the metal-ion insertion step: chelation of Fe(2+) into protoporphyrin IX leads to haem and phytochromobilin, whereas insertion of Mg(2+) is th...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/S1360-1385(03)00064-5

    authors: Cornah JE,Terry MJ,Smith AG

    更新日期:2003-05-01 00:00:00

  • Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions.

    abstract::Plant photosynthesis performs the remarkable feat of converting light energy into usable chemical forms, which involves taming highly reactive intermediates without harming plant cells. This requires an apparatus that is not only efficient and robust but also flexible in its responses to changing environmental conditi...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2004.05.001

    authors: Kramer DM,Avenson TJ,Edwards GE

    更新日期:2004-07-01 00:00:00

  • Evolution and development of virtual inflorescences.

    abstract::The architecture of inflorescences diverged during the evolution of distinct plant families by mechanisms that remain unknown. Using computer modeling, Przemyslaw Prusinkiewicz and colleagues established a single model for the development of distinct inflorescences. Selection restricts inflorescence evolution to high ...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2007.11.004

    authors: Koes R

    更新日期:2008-01-01 00:00:00

  • The evolution of parasitism in plants.

    abstract::The multiple independent origins of plant parasitism suggest that numerous ancestral plant lineages possessed the developmental flexibility to meet the requirements of a parasitic life style, including such adaptations as the ability to recognize host plants, form an invasive haustorium, and regulate the transfer of n...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2010.01.004

    authors: Westwood JH,Yoder JI,Timko MP,dePamphilis CW

    更新日期:2010-04-01 00:00:00

  • Switching on plant genes by external chemical signals.

    abstract::During the past decade there has been rapidly increasing interest in the role of plant volatiles in insect-plant interactions and the induction of plant defence systems by both pathogens and herbivores. Scientists are striving to link the proximate studies elucidating pathways and genes with the ultimate adaptive stud...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/s1360-1385(01)01899-4

    authors: Pickett JA,Poppy GM

    更新日期:2001-04-01 00:00:00