C/EBPβ mediates NQO1 and GSTP1 anti-oxidative reductases expression in glioblastoma, promoting brain tumor proliferation.

Abstract:

:Glioblastoma (GBM) is the most common and most aggressive brain tumor, associated with high levels of reactive oxidative species (ROS) due to metabolic and signaling aberrations. High ROS levels are detrimental to cells, but it remains incompletely understood how cancer cells cope with the adverse effects. Here we show that C/EBPβ, a ROS responsive transcription factor, regulates the transcription of NQO1 and GSTP1, two antioxidative reductases, which neutralize ROS in the GBM and mediates their proliferation. C/EBPβ is upregulated in EGFR overexpressed GBM cells, inversely correlated with the survival rates of brain tumor patients. Interestingly, C/EBPβ binds the promoters of NQO1 and GSTP1 and escalates their expression. Overexpression of C/EBPβ selectively decreases the ROS in EGFR-overexpressed U87MG cells and promotes cell proliferation via upregulating NQO1 and GSTP1; whereas knocking down C/EBPβ elevates the ROS and reduces proliferation by repressing the reductases. Accordingly, C/EBPβ mediates the brain tumor growth in vivo, coupling with NQO1 and GSTP1 expression and ROS levels. Hence, C/EBPβ regulates the expression of antioxidative reductases and balances the ROS, promoting brain tumor proliferation.

journal_name

Redox Biol

journal_title

Redox biology

authors

Lei K,Xia Y,Wang XC,Ahn EH,Jin L,Ye K

doi

10.1016/j.redox.2020.101578

subject

Has Abstract

pub_date

2020-07-01 00:00:00

pages

101578

issn

2213-2317

pii

S2213-2317(20)30637-6

journal_volume

34

pub_type

杂志文章
  • Maintenance of mitochondrial genomic integrity in the absence of manganese superoxide dismutase in mouse liver hepatocytes.

    abstract::Manganese superoxide dismutase, encoded by the Sod2 gene, is a ubiquitously expressed mitochondrial antioxidant enzyme that is essential for mammalian life. Mice born with constitutive genetic knockout of Sod2 do not survive the neonatal stage, which renders the longitudinal study of the biochemical and metabolic effe...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2013.01.001

    authors: Cyr AR,Brown KE,McCormick ML,Coleman MC,Case AJ,Watts GS,Futscher BW,Spitz DR,Domann FE

    更新日期:2013-02-05 00:00:00

  • Selenium-binding protein 1 (SELENBP1) is a marker of mature adipocytes.

    abstract::Selenium-binding protein 1 (SELENBP1) has recently been reported to catalyse the oxidation of methanethiol, an organosulfur compound produced by gut microbiota. Two of the reaction products of methanethiol oxidation, hydrogen peroxide and hydrogen sulphide, serve as signalling molecules for cell differentiation. Indee...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.11.004

    authors: Steinbrenner H,Micoogullari M,Hoang NA,Bergheim I,Klotz LO,Sies H

    更新日期:2019-01-01 00:00:00

  • Increased oxidative stress mediates the antitumor effect of PARP inhibition in ovarian cancer.

    abstract::PARP inhibitors have been widely tested in clinical trials, especially for the treatment of breast cancer and ovarian cancer, and were shown to be highly successful. Because PARP primarily functions in sensing and repairing DNA strand breaks, the therapeutic effect of PARP inhibition is generally believed to be attrib...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.03.016

    authors: Hou D,Liu Z,Xu X,Liu Q,Zhang X,Kong B,Wei JJ,Gong Y,Shao C

    更新日期:2018-07-01 00:00:00

  • Over-expression of a cardiac-specific human dopamine D5 receptor mutation in mice causes a dilated cardiomyopathy through ROS over-generation by NADPH oxidase activation and Nrf2 degradation.

    abstract::Dilated cardiomyopathy (DCM) is a severe disorder caused by medications or genetic mutations. D5 dopamine receptor (D5R) gene knockout (D5-/-) mice have cardiac hypertrophy and high blood pressure. To investigate the role and mechanism by which the D5R regulates cardiac function, we generated cardiac-specific human D5...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.07.008

    authors: Jiang X,Liu Y,Liu X,Wang W,Wang Z,Hu Y,Zhang Y,Zhang Y,Jose PA,Wei Q,Yang Z

    更新日期:2018-10-01 00:00:00

  • TMEM126B deficiency reduces mitochondrial SDH oxidation by LPS, attenuating HIF-1α stabilization and IL-1β expression.

    abstract::Mitochondrial derived reactive oxygen species (mtROS) are known for their signaling qualities in both physiology and pathology. To elucidate mitochondrial complex I-dependent ROS-signaling after lipopolysaccharide (LPS)-stimulation THP-1 macrophages with a knockdown of the transmembrane protein TMEM126B were generated...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.10.007

    authors: Fuhrmann DC,Wittig I,Brüne B

    更新日期:2019-01-01 00:00:00

  • ROS-mediated lysosomal membrane permeabilization is involved in bupivacaine-induced death of rabbit intervertebral disc cells.

    abstract::Bupivacaine is frequently administered for diagnosing and controlling spine-related pain in interventional spine procedures. However, the potential cytotoxic effects of bupivacaine on intervertebral disc (IVD) cells and the underlying molecular mechanisms have not yet been fully established. Here, we showed that bupiv...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.06.010

    authors: Cai X,Liu Y,Hu Y,Liu X,Jiang H,Yang S,Shao Z,Xia Y,Xiong L

    更新日期:2018-09-01 00:00:00

  • Reductive stress impairs myogenic differentiation.

    abstract::Myo-satellite cells regenerate and differentiate into skeletal muscle (SM) after acute or chronic injury. Changes in the redox milieu towards the oxidative arm at the wound site are known to compromise SM regeneration. Recently, we reported that abrogation of Nrf2/antioxidant signaling promotes oxidative stress and im...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101492

    authors: Rajasekaran NS,Shelar SB,Jones DP,Hoidal JR

    更新日期:2020-07-01 00:00:00

  • Differentiating between apparent and actual rates of H2O2 metabolism by isolated rat muscle mitochondria to test a simple model of mitochondria as regulators of H2O2 concentration.

    abstract::Mitochondria are often regarded as a major source of reactive oxygen species (ROS) in animal cells, with H2O2 being the predominant ROS released from mitochondria; however, it has been recently demonstrated that energized brain mitochondria may act as stabilizers of H2O2 concentration (Starkov et al. [1]) based on the...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.05.001

    authors: Treberg JR,Munro D,Banh S,Zacharias P,Sotiri E

    更新日期:2015-08-01 00:00:00

  • Inhibition of TXNRD or SOD1 overcomes NRF2-mediated resistance to β-lapachone.

    abstract::Alterations in the NRF2/KEAP1 pathway result in the constitutive activation of NRF2, leading to the aberrant induction of antioxidant and detoxification enzymes, including NQO1. The NQO1 bioactivatable agent β-lapachone can target cells with high NQO1 expression but relies in the generation of reactive oxygen species ...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101440

    authors: Torrente L,Prieto-Farigua N,Falzone A,Elkins CM,Boothman DA,Haura EB,DeNicola GM

    更新日期:2020-02-01 00:00:00

  • Nitrate decreases xanthine oxidoreductase-mediated nitrite reductase activity and attenuates vascular and blood pressure responses to nitrite.

    abstract::Nitrite and nitrate restore deficient endogenous nitric oxide (NO) production as they are converted back to NO, and therefore complement the classic enzymatic NO synthesis. Circulating nitrate and nitrite must cross membrane barriers to produce their effects and increased nitrate concentrations may attenuate the nitri...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.03.003

    authors: Damacena-Angelis C,Oliveira-Paula GH,Pinheiro LC,Crevelin EJ,Portella RL,Moraes LAB,Tanus-Santos JE

    更新日期:2017-08-01 00:00:00

  • The dual role of poly(ADP-ribose) polymerase-1 in modulating parthanatos and autophagy under oxidative stress in rat cochlear marginal cells of the stria vascularis.

    abstract::Oxidative stress is reported to regulate several apoptotic and necrotic cell death pathways in auditory tissues. Poly(ADP-ribose) polymerase-1 (PARP-1) can be activated under oxidative stress, which is the hallmark of parthanatos. Autophagy, which serves either a pro-survival or pro-death function, can also be stimula...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.10.002

    authors: Jiang HY,Yang Y,Zhang YY,Xie Z,Zhao XY,Sun Y,Kong WJ

    更新日期:2018-04-01 00:00:00

  • Diphthamide affects selenoprotein expression: Diphthamide deficiency reduces selenocysteine incorporation, decreases selenite sensitivity and pre-disposes to oxidative stress.

    abstract::The diphthamide modification of translation elongation factor 2 is highly conserved in eukaryotes and archaebacteria. Nevertheless, cells lacking diphthamide can carry out protein synthesis and are viable. We have analyzed the phenotypes of diphthamide deficient cells and found that diphthamide deficiency reduces sele...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.09.015

    authors: Mayer K,Mundigl O,Kettenberger H,Birzele F,Stahl S,Pastan I,Brinkmann U

    更新日期:2019-01-01 00:00:00

  • Nitric oxide prevents Aft1 activation and metabolic remodeling in frataxin-deficient yeast.

    abstract::Yeast frataxin homolog (Yfh1) is the orthologue of human frataxin, a mitochondrial protein whose deficiency causes Friedreich Ataxia. Yfh1 deficiency activates Aft1, a transcription factor governing iron homeostasis in yeast cells. Although the mechanisms causing this activation are not completely understood, it is as...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.09.001

    authors: Alsina D,Ros J,Tamarit J

    更新日期:2018-04-01 00:00:00

  • Thrombin-induced reactive oxygen species generation in platelets: A novel role for protease-activated receptor 4 and GPIbα.

    abstract:BACKGROUND:Platelets are essential for maintaining haemostasis and play a key role in the pathogenesis of cardiovascular disease. Upon ligation of platelet receptors through subendothelial matrix proteins, intracellular reactive oxygen species (ROS) are generated, further amplifying the platelet activation response. Th...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.10.009

    authors: Carrim N,Arthur JF,Hamilton JR,Gardiner EE,Andrews RK,Moran N,Berndt MC,Metharom P

    更新日期:2015-12-01 00:00:00

  • Redox control of yeast Sir2 activity is involved in acetic acid resistance and longevity.

    abstract::Yeast Sir2 is an NAD-dependent histone deacetylase related to oxidative stress and aging. In a previous study, we showed that Sir2 is regulated by S-glutathionylation of key cysteine residues located at the catalytic domain. Mutation of these residues results in strains with increased resistance to disulfide stress. I...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101229

    authors: Vall-Llaura N,Mir N,Garrido L,Vived C,Cabiscol E

    更新日期:2019-06-01 00:00:00

  • Nitric oxide-mediated sensitization of resistant tumor cells to apoptosis by chemo-immunotherapeutics.

    abstract::The generation of NO by the various NO synthases in normal and malignant tissues is manifested by various biological effects that are involved in the regulation of cell survival, differentiation and cell death. The role of NO in the cytotoxic immune response was first revealed by demonstrating the induction of iNOS in...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2015.08.013

    authors: Bonavida B,Garban H

    更新日期:2015-12-01 00:00:00

  • Peroxiredoxin-mediated disulfide bond formation is required for nucleocytoplasmic translocation and secretion of HMGB1 in response to inflammatory stimuli.

    abstract::The nuclear protein HMGB1 (high mobility group box 1) is secreted by monocytes-macrophages in response to inflammatory stimuli and serves as a danger-associated molecular pattern. Acetylation and phosphorylation of HMGB1 are implicated in the regulation of its nucleocytoplasmic translocation for secretion, although in...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101203

    authors: Kwak MS,Kim HS,Lkhamsuren K,Kim YH,Han MG,Shin JM,Park IH,Rhee WJ,Lee SK,Rhee SG,Shin JS

    更新日期:2019-06-01 00:00:00

  • Oxidation of protein disulfide bonds by singlet oxygen gives rise to glutathionylated proteins.

    abstract::Disulfide bonds play a key function in determining the structure of proteins, and are the most strongly conserved compositional feature across proteomes. They are particularly common in extracellular environments, such as the extracellular matrix and plasma, and in proteins that have structural (e.g. matrix) or bindin...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101822

    authors: Jiang S,Carroll L,Rasmussen LM,Davies MJ

    更新日期:2021-01-01 00:00:00

  • Low sulfide levels and a high degree of cystathionine β-synthase (CBS) activation by S-adenosylmethionine (SAM) in the long-lived naked mole-rat.

    abstract::Hydrogen sulfide (H2S) is a gaseous signalling molecule involved in many physiological and pathological processes. There is increasing evidence that H2S is implicated in aging and lifespan control in the diet-induced longevity models. However, blood sulfide concentration of naturally long-lived species is not known. H...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2016.01.008

    authors: Dziegelewska M,Holtze S,Vole C,Wachter U,Menzel U,Morhart M,Groth M,Szafranski K,Sahm A,Sponholz C,Dammann P,Huse K,Hildebrandt T,Platzer M

    更新日期:2016-08-01 00:00:00

  • Redox modulation of muscle mass and function.

    abstract::Muscle mass and strength are very important for exercise performance. Training-induced musculoskeletal injuries usually require periods of complete immobilization to prevent any muscle contraction of the affected muscle groups. Disuse muscle wasting will likely affect every sport practitioner in his or her lifetime. E...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2020.101531

    authors: Gomez-Cabrera MC,Arc-Chagnaud C,Salvador-Pascual A,Brioche T,Chopard A,Olaso-Gonzalez G,Viña J

    更新日期:2020-08-01 00:00:00

  • Skin protective and regenerative effects of RM191A, a novel superoxide dismutase mimetic.

    abstract::Superoxide dismutase (SOD) is known to be protective against oxidative stress-mediated skin dysfunction. Here we explore the potential therapeutic activities of RM191A, a novel SOD mimetic, on skin. RM191A is a water-soluble dimeric copper (Cu2+-Cu3+)-centred polyglycine coordination complex. It displays 10-fold highe...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101790

    authors: Shariev A,Menounos S,Laos AJ,Laxman P,Lai D,Hua S,Zinger A,McRae CR,Casbolt LS,Combes V,Smith G,Hung TT,Dixon KM,Thordarson P,Mason RS,Das A

    更新日期:2021-01-01 00:00:00

  • L-dehydroascorbic acid can substitute l-ascorbic acid as dietary vitamin C source in guinea pigs.

    abstract::Vitamin C deficiency globally affects several hundred million people and has been associated with increased morbidity and mortality in numerous studies. In this study, bioavailability of the oxidized form of vitamin C (l-dehydroascorbic acid or DHA)-commonly found in vitamin C containing food products prone to oxidati...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.11.003

    authors: Frikke-Schmidt H,Tveden-Nyborg P,Lykkesfeldt J

    更新日期:2016-04-01 00:00:00

  • Critical role of AMPK in redox regulation under glucose starvation.

    abstract::Glucose starvation is one of the major forms of metabolic stress in cancer cells. Deprivation of glucose impairs glycolysis and the pentose phosphate pathway, which elicits oxidative stress due to enhanced production of reactive oxygen species (ROS) and impaired antioxidant system, leading to redox imbalance and cell ...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2019.101154

    authors: Ren Y,Shen HM

    更新日期:2019-07-01 00:00:00

  • Simvastatin and oxidative stress in humans: A randomized, double-blinded, placebo-controlled clinical trial.

    abstract::Simvastatin reduces the blood concentration of cholesterol by inhibiting hydroxymethylglutaryl-coenzyme A reductase, the rate-limiting enzyme in cholesterol synthesis, and thereby reduces the risk of cardiovascular disease. In addition, simvastatin treatment leads to a reduction in fluxes in mitochondrial respiratory ...

    journal_title:Redox biology

    pub_type: 临床试验,杂志文章,随机对照试验

    doi:10.1016/j.redox.2016.05.007

    authors: Rasmussen ST,Andersen JT,Nielsen TK,Cejvanovic V,Petersen KM,Henriksen T,Weimann A,Lykkesfeldt J,Poulsen HE

    更新日期:2016-10-01 00:00:00

  • miR-200a-5p regulates myocardial necroptosis induced by Se deficiency via targeting RNF11.

    abstract::Necroptosis has been discovered as a new paradigm of cell death and may play a key role in heart disease and selenium (Se) deficiency. Hence, we detected the specific microRNA (miRNA) in response to Se-deficient heart using microRNAome analysis. For high-throughput sequencing using Se-deficient chicken cardiac tissue,...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.11.025

    authors: Yang T,Cao C,Yang J,Liu T,Lei XG,Zhang Z,Xu S

    更新日期:2018-05-01 00:00:00

  • Estradiol improves cardiovascular function through up-regulation of SOD2 on vascular wall.

    abstract::Epidemiological studies have shown that estrogens have protective effects in cardiovascular diseases, even though the results from human clinical trials remain controversial, while most of the animal experiments confirmed this effect, but the detailed mechanism remains unclear. In this study, we found that estradiol (...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2014.11.001

    authors: Liu Z,Gou Y,Zhang H,Zuo H,Zhang H,Liu Z,Yao D

    更新日期:2014-01-01 00:00:00

  • Pleiotropic effects of 4-hydroxynonenal on oxidative burst and phagocytosis in neutrophils.

    abstract::Metabolic control of cellular function is significant in the context of inflammation-induced metabolic dysregulation in immune cells. Generation of reactive oxygen species (ROS) such as hydrogen peroxide and superoxide are one of the critical events that modulate the immune response in neutrophils. When activated, neu...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2016.06.003

    authors: Chacko BK,Wall SB,Kramer PA,Ravi S,Mitchell T,Johnson MS,Wilson L,Barnes S,Landar A,Darley-Usmar VM

    更新日期:2016-10-01 00:00:00

  • Renoprotective effect of the antioxidant curcumin: Recent findings.

    abstract::For years, there have been studies based on the use of natural compounds plant-derived as potential therapeutic agents for various diseases in humans. Curcumin is a phenolic compound extracted from Curcuma longa rhizome commonly used in Asia as a spice, pigment and additive. In traditional medicine of India and China,...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2013.09.003

    authors: Trujillo J,Chirino YI,Molina-Jijón E,Andérica-Romero AC,Tapia E,Pedraza-Chaverrí J

    更新日期:2013-09-17 00:00:00

  • Oxidative modification of lipoic acid by HNE in Alzheimer disease brain.

    abstract::Alzheimer disease (AD) is an age-related neurodegenerative disease characterized by the presence of three pathological hallmarks: synapse loss, extracellular senile plaques (SP) and intracellular neurofibrillary tangles (NFTs). The major component of SP is amyloid β-peptide (Aβ), which has been shown to induce oxidati...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2013.01.002

    authors: Hardas SS,Sultana R,Clark AM,Beckett TL,Szweda LI,Murphy MP,Butterfield DA

    更新日期:2013-01-30 00:00:00

  • TRPM2 channel-mediated cell death: An important mechanism linking oxidative stress-inducing pathological factors to associated pathological conditions.

    abstract::Oxidative stress resulting from the accumulation of high levels of reactive oxygen species is a salient feature of, and a well-recognised pathological factor for, diverse pathologies. One common mechanism for oxidative stress damage is via the disruption of intracellular ion homeostasis to induce cell death. TRPM2 is ...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2020.101755

    authors: Malko P,Jiang LH

    更新日期:2020-10-01 00:00:00