Design and modelling of an engineered bacteria-based, pressure-sensitive soil.

Abstract:

:In this paper, we describe the first steps in the design of a synthetic biological system based on the use of genetically modified bacteria to detect elevated pressures in soils and respond by cementing soil particles. Such a system might, for example, enable a self- constructed foundation to form in response to load using engineered bacteria which could be seeded and grown in the soils. This process would reduce the need for large-scale excavations and may be the basis for a new generation of self-assembling and responsive bio-based materials. A prototype computational model is presented which integrates experimental data from a pressure sensitive gene within Escherichia coli bacteria with geotechnical models of soil loading and pore water pressure. The results from the integrated model are visualised by mapping expected gene expression values onto the soil volume. We also use our experimental data to design a two component system where one type of bacteria acts as a sensor and signals to another material synthesis bacteria. The simulation demonstrates the potential of computational models which integrate multiple scales from macro stresses in soils to the expression of individual genes to inform new types of design process. The work also illustrates the combination of in silico (silicon based computing) computation with in vivo (in the living) computation.

journal_name

Bioinspir Biomim

authors

Dade-Robertson M,Mitrani H,Corral JR,Zhang M,Hernan L,Guyet A,Wipat A

doi

10.1088/1748-3190/aabe15

subject

Has Abstract

pub_date

2018-05-25 00:00:00

pages

046004

issue

4

eissn

1748-3182

issn

1748-3190

journal_volume

13

pub_type

杂志文章
  • Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV.

    abstract::Birds demonstrate that flapping-wing flight (FWF) is a versatile flight mode, compatible with hovering, forward flight and gliding to save energy. This extended flight domain would be especially useful on mini-UAVs. However, design is challenging because aerodynamic efficiency is conditioned by complex movements of th...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/2/4/002

    authors: de Margerie E,Mouret JB,Doncieux S,Meyer JA

    更新日期:2007-12-01 00:00:00

  • Biarticular elements as a contributor to energy efficiency: biomechanical review and application in bio-inspired robotics.

    abstract::Despite the increased interest in exoskeleton research in the last decades, not much progress has been made on the successful reduction of user effort. In humans, biarticular elements have been identified as one of the reasons for the energy economy of locomotion. This document gives an extensive literature overview c...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章,评审

    doi:10.1088/1748-3190/aa806e

    authors: Junius K,Moltedo M,Cherelle P,Rodriguez-Guerrero C,Vanderborght B,Lefeber D

    更新日期:2017-11-08 00:00:00

  • The function of the alula on engineered wings: a detailed experimental investigation of a bioinspired leading-edge device.

    abstract::Birds fly in dynamic flight conditions while maintaining aerodynamic efficiency. This agility is in part due to specialized feather systems that function as flow control devices during adverse conditions such as high-angle of attack maneuvers. In this paper, we present an engineered three-dimensional leading-edge devi...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab36ad

    authors: Ito MR,Duan C,Wissa AA

    更新日期:2019-08-29 00:00:00

  • Configuration optimization of bionic piezoelectric hair sensor for acoustic/tactile detection.

    abstract::Specialized sensory hairs are important biological sensors for arthropods to detect and recognize environmental conditions including acoustic, pressure and airflow signals. However, the present design methodology of such biomimic micro devices are mainly depending on shape mimicking, which greatly restricts their perf...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab8f6c

    authors: Wang Y,Zhao J,Xia Y,Liu P

    更新日期:2020-08-12 00:00:00

  • Self-healing polymer composites: mimicking nature to enhance performance.

    abstract::Autonomic self-healing materials, where initiation of repair is integral to the material, are being developed for engineering applications. This bio-inspired concept offers the designer an ability to incorporate secondary functional materials capable of counteracting service degradation whilst still achieving the prim...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章,评审

    doi:10.1088/1748-3182/2/1/P01

    authors: Trask RS,Williams HR,Bond IP

    更新日期:2007-03-01 00:00:00

  • Mesocarp of Brazil nut (Bertholletia excelsa) as inspiration for new impact resistant materials.

    abstract::Aiming to produce bioinspired impact and puncture resistant materials, the mesocarp of the Brazil nut (Bertholletia excelsa) was characterized. The mesocarp composition was investigated by chemical extraction and its microstructure was analyzed by optical microscopy and microtomography (microCT). A compression test ev...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab2298

    authors: Sonego M,Fleck C,Pessan LA

    更新日期:2019-07-03 00:00:00

  • A mechanical analysis of woodpecker drumming and its application to shock-absorbing systems.

    abstract::A woodpecker is known to drum the hard woody surface of a tree at a rate of 18 to 22 times per second with a deceleration of 1200 g, yet with no sign of blackout or brain damage. As a model in nature, a woodpecker is studied to find clues to develop a shock-absorbing system for micromachined devices. Its advanced shoc...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/6/1/016003

    authors: Yoon SH,Park S

    更新日期:2011-03-01 00:00:00

  • Burst-and-coast swimming is not always energetically beneficial in fish (Hemigrammus bleheri).

    abstract::Burst-and-coast swimming is an intermittent mode of locomotion used by various fish species. The intermittent gait has been associated with certain advantages such as stabilizing the visual field, improved sensing ability, and reduced energy expenditure. We investigate burst-coast swimming in rummy nose tetra fish (He...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/abb521

    authors: Ashraf I,Van Wassenbergh S,Verma S

    更新日期:2020-11-07 00:00:00

  • A bio-inspired apposition compound eye machine vision sensor system.

    abstract::The Wyoming Information, Signal Processing, and Robotics Laboratory is developing a wide variety of bio-inspired vision sensors. We are interested in exploring the vision system of various insects and adapting some of their features toward the development of specialized vision sensors. We do not attempt to supplant tr...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/4/4/046002

    authors: Davis JD,Barrett SF,Wright CH,Wilcox M

    更新日期:2009-12-01 00:00:00

  • A design for a dynamic biomimetic sonarhead inspired by horseshoe bats.

    abstract::The noseleaf and pinnae of horseshoe bats (Rhinolophus ferrumequinum) have both been shown to actively deform during biosonar operation. Since these baffle structures directly affect the properties of the animals biosonar system, this work mimics horseshoe bat sonar system with the goal of developing a platform to stu...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aac788

    authors: Caspers P,Müller R

    更新日期:2018-06-26 00:00:00

  • Decentralized control mechanism underlying interlimb coordination of millipedes.

    abstract::Legged animals exhibit adaptive and resilient locomotion through interlimb coordination. The long-term goal of this study is to clarify the relationship between the number of legs and the inherent decentralized control mechanism for interlimb coordination. As a preliminary step, the study focuses on millipedes as they...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa64a5

    authors: Kano T,Sakai K,Yasui K,Owaki D,Ishiguro A

    更新日期:2017-04-04 00:00:00

  • A novel distributed swarm control strategy based on coupled signal oscillators.

    abstract::The miniaturization of microrobots is accompanied by limitations of signaling, sensing and agility. Control of a swarm of simple microrobots has to cope with such constraints in a way which still guarantees the accomplishment of a task. A recently proposed communication method, which is based on the coupling of signal...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/2/3/002

    authors: Hartbauer M,Römer H

    更新日期:2007-09-01 00:00:00

  • Emergence of behavior through morphology: a case study on an octopus inspired manipulator.

    abstract::The complex motion abilities of the Octopus vulgaris have been an intriguing research topic for biologists and roboticists alike. Various studies have been conducted on the underlying control architectures employed by these high dimensional biological organisms. Researchers have attempted to replicate these architectu...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab1621

    authors: Thuruthel TG,Falotico E,Renda F,Flash T,Laschi C

    更新日期:2019-04-24 00:00:00

  • Flytrap-inspired robot using structurally integrated actuation based on bistability and a developable surface.

    abstract::The Venus flytrap uses bistability, the structural characteristic of its leaf, to actuate the leaf's rapid closing motion for catching its prey. This paper presents a flytrap-inspired robot and novel actuation mechanism that exploits the structural characteristics of this structure and a developable surface. We focus ...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/9/3/036004

    authors: Kim SW,Koh JS,Lee JG,Ryu J,Cho M,Cho KJ

    更新日期:2014-09-01 00:00:00

  • Biomimetic design processes in architecture: morphogenetic and evolutionary computational design.

    abstract::Design computation has profound impact on architectural design methods. This paper explains how computational design enables the development of biomimetic design processes specific to architecture, and how they need to be significantly different from established biomimetic processes in engineering disciplines. The pap...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/7/1/015003

    authors: Menges A

    更新日期:2012-03-01 00:00:00

  • Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates.

    abstract::Nano-structured colorful zinc oxide (ZnO) replicas were produced using the wings of the Ideopsis similis butterfly as templates. The ZnO replicas we obtained exhibit iridescence, which was clearly observed under an optical microscope (OM). Field emission scanning electron microscope analysis shows that all the microst...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/1/3/003

    authors: Zhang W,Zhang D,Fan T,Ding J,Gu J,Guo Q,Ogawa H

    更新日期:2006-09-01 00:00:00

  • Optimal propulsive flapping in Stokes flows.

    abstract::Swimming fish and flying insects use the flapping of fins and wings to generate thrust. In contrast, microscopic organisms typically deform their appendages in a wavelike fashion. Since a flapping motion with two degrees of freedom is able, in theory, to produce net forces from a time-periodic actuation at all Reynold...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/9/1/016001

    authors: Was L,Lauga E

    更新日期:2014-03-01 00:00:00

  • A pressure difference sensor inspired by fish canal lateral line.

    abstract::It is of interest to exploit the insight from the lateral line system of fish for flow sensing applications. In this paper, a novel fish canal lateral line-inspired pressure difference sensor is proposed by embedding an ionic polymer-metal composite (IPMC) sensor within a canal filled with viscous fluid. Such a sensor...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab2fa8

    authors: Sharif MA,Tan X

    更新日期:2019-07-29 00:00:00

  • Design and analysis of coiled fiber reinforced soft pneumatic actuator.

    abstract::Fiber reinforced elastomeric enclosures (FREEs) are soft pneumatic actuators that can contract and generate forces upon pressurization. Typical engineering applications utilize FREEs in their straight cylindrical configuration and derive actuation displacement and forces from their ends. However, there are several ins...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aab19c

    authors: Singh G,Xiao C,Hsiao-Wecksler ET,Krishnan G

    更新日期:2018-04-18 00:00:00

  • Application of reduced sensor movement sequences as a precursor for search area partitioning and a selection of discrete EEV contour-ring fragments for active electrolocation.

    abstract::In addition to their visual sense, weakly electric fish use active electrolocation to detect and analyse objects in their nearby environment. Their ability to generate and sense electric fields combined with scanning-like swimming movements are intended to extract further parameters like the size, shape and material p...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aae23f

    authors: Wolf-Homeyer S,Engelmann J,Schneider A

    更新日期:2018-10-16 00:00:00

  • Derivation of simple rules for complex flow vector fields on the lower part of the human face for robot face design.

    abstract::It is quite difficult for android robots to replicate the numerous and various types of human facial expressions owing to limitations in terms of space, mechanisms, and materials. This situation could be improved with greater knowledge regarding these expressions and their deformation rules, i.e. by using the biomimet...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa8f33

    authors: Ishihara H,Ota N,Asada M

    更新日期:2017-11-27 00:00:00

  • Energy efficient hopping with Hill-type muscle properties on segmented legs.

    abstract::The intrinsic muscular properties of biological muscles are the main source of stabilization during locomotion, and superior biological performance is obtained with low energy costs. Man-made actuators struggle to reach the same energy efficiency seen in biological muscles. Here, we compare muscle properties within a ...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/11/3/036002

    authors: Rosendo A,Iida F

    更新日期:2016-04-12 00:00:00

  • A fast, precise and low-cost replication technique for nano- and high-aspect-ratio structures of biological and artificial surfaces.

    abstract::Biological surfaces are multifunctional interfaces between the organisms and their environment. Properties such as the wettability and adhesion of particles are linked to the micro- and nanostructures of their surfaces. In this study, we used plant and artificial surfaces covered with wax crystals to develop a low-cos...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/3/4/046002

    authors: Koch K,Schulte AJ,Fischer A,Gorb SN,Barthlott W

    更新日期:2008-12-01 00:00:00

  • How wing kinematics affect power requirements and aerodynamic force production in a robotic bat wing.

    abstract::Bats display a wide variety of behaviors that require different amounts of aerodynamic force. To control and modulate aerodynamic force, bats change wing kinematics, which, in turn, may change the power required for wing motion. There are many kinematic mechanisms that bats, and other flapping animals, can use to incr...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/9/2/025008

    authors: Bahlman JW,Swartz SM,Breuer KS

    更新日期:2014-06-01 00:00:00

  • Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles.

    abstract::Recent developments in the design and propulsion of biomimetic autonomous underwater vehicles (AUVs) have focused on boxfish as models (e.g. Deng and Avadhanula 2005 Biomimetic micro underwater vehicle with oscillating fin propulsion: system design and force measurement Proc. 2005 IEEE Int. Conf. Robot. Auto. (Barcelo...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/3/3/034002

    authors: Blake RW,Ng H,Chan KH,Li J

    更新日期:2008-09-01 00:00:00

  • On the energetics of quadrupedal running: predicting the metabolic cost of transport via a flexible-torso model.

    abstract::In this paper, the effect of torso flexibility on the energetics of quadrupedal bounding is examined in a template setting. Two reductive sagittal-plane models, one with a rigid, non-deformable torso and one with a flexible, unactuated torso are proposed. Both models feature non-trivial leg mass and inertia to capture...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/10/5/056008

    authors: Cao Q,Poulakakis I

    更新日期:2015-09-03 00:00:00

  • Musca domestica inspired machine vision sensor with hyperacuity.

    abstract::A fiber optic sensor inspired by the compound eye of the common housefly, Musca domestica, has been developed. The sensor coupled with analog preprocessing hardware has the potential to extract edge information quickly and in parallel. The design is motivated by the parallel nature of the fly's vision system and its d...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/3/2/026003

    authors: Riley DT,Harmann WM,Barrett SF,Wright CH

    更新日期:2008-06-01 00:00:00

  • Learning from evolutionary optimisation: what are toughening mechanisms good for in dentine, a nonrepairing bone tissue?

    abstract::The main mass of material found in teeth is dentine, a bone-like tissue, riddled with micron-sized tubules and devoid of living cells. It provides support to the outer wear-resistant layer of enamel, and exhibits toughening mechanisms which contribute to crack resistance. And yet unlike most bone tissues, dentine does...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/11/5/051003

    authors: Zaslansky P,Currey JD,Fleck C

    更新日期:2016-09-12 00:00:00

  • The dynamics of hovering flight in hummingbirds, insects and bats with implications for aerial robotics.

    abstract::We analyze the effects of morphology and wing kinematics on the performance of hovering flight. We present a simplified dynamical model with body translational and rotational degrees of freedom that incorporates the flapping, long-axis wing rotation and folding of the wing. To validate our simulation, we compare our r...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aaea56

    authors: Vejdani HR,Boerma DB,Swartz SM,Breuer KS

    更新日期:2018-11-09 00:00:00

  • Running up a wall: the role and challenges of dynamic climbing in enhancing multi-modal legged systems.

    abstract::Animals have demonstrated the ability to move through, across and over some of the most daunting environments on earth. This versatility and adaptability stems from their capacity to alter their locomotion dynamics and employ disparate locomotion modalities to suit the terrain at hand. As with modalities such as runni...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/10/2/025005

    authors: Miller BD,Rivera PR,Dickson JD,Clark JE

    更新日期:2015-03-26 00:00:00