Application of reduced sensor movement sequences as a precursor for search area partitioning and a selection of discrete EEV contour-ring fragments for active electrolocation.

Abstract:

:In addition to their visual sense, weakly electric fish use active electrolocation to detect and analyse objects in their nearby environment. Their ability to generate and sense electric fields combined with scanning-like swimming movements are intended to extract further parameters like the size, shape and material properties of objects. Inspired by this biological example, this work introduces an application for active electrolocation based on reduced sensor movement sequences as presented in Wolf-Homeyer et al (2016 Bioinspir. Biomim. 11 055002). Initially, the application is conducted with a simulated receptor-system consisting of an emitter-dipole and an orthogonally arranged pair of sensor-electrodes. Close inspection of a minimal set of scanning movements allows the exclusion of sectors of the general search area early in the proposed localization algorithm (search area partitioning). Furthermore, the proposed algorithm is based on an analytical representation of the electric field and of the so-called EEV (ensemble of electrosensory viewpoints) (Solberg et al 2008 Int. J. Robot. Res. 27 529-48) rather than using computationally expensive FEM simulations, rendering it suitable for embedded computer systems. Two-dimensional discrete EEV contour-ring points (CRPs) of desired accuracy are extracted. In the core of the localization algorithm, fragments of the EEV are selected from valid sectors of the search area, which generates sets of CRPs, one for each sensor-emitter position/orientation. These sets are investigated by means of a nearness metric to find points in different sets which correspond to each other in order to estimate the object position. Two resultant scanning strategies/localization algorithms are introduced.

journal_name

Bioinspir Biomim

authors

Wolf-Homeyer S,Engelmann J,Schneider A

doi

10.1088/1748-3190/aae23f

subject

Has Abstract

pub_date

2018-10-16 00:00:00

pages

066008

issue

6

eissn

1748-3182

issn

1748-3190

journal_volume

13

pub_type

杂志文章
  • A comparative study of the effects of vein-joints on the mechanical behaviour of insect wings: I. Single joints.

    abstract::The flight performance of insects is strongly affected by the deformation of the wing during a stroke cycle. Many insects therefore use both active and passive mechanisms to control the deformation of their wings in flight. Several studies have focused on the wing kinematics, and plenty is known about the mechanism of...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/10/5/056003

    authors: Rajabi H,Ghoroubi N,Darvizeh A,Dirks JH,Appel E,Gorb SN

    更新日期:2015-08-20 00:00:00

  • Theoretical and numerical studies on a five-ray flexible pectoral fin during labriform swimming.

    abstract::Natural fish have evolved with an excellent swimming performance after millions of years. Based on the flexible features of the pectoral fin, this paper focuses on the kinematics and hydrodynamics of the fin when fish are swimming stably in still water in labriform mode. The locomotion mechanism based on the morpholog...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab550e

    authors: Weng J,Zhu Y,Du X,Yang G,Hu D

    更新日期:2019-12-04 00:00:00

  • Controlling legs for locomotion-insights from robotics and neurobiology.

    abstract::Walking is the most common terrestrial form of locomotion in animals. Its great versatility and flexibility has led to many attempts at building walking machines with similar capabilities. The control of walking is an active research area both in neurobiology and robotics, with a large and growing body of work. This p...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章,评审

    doi:10.1088/1748-3190/10/4/041001

    authors: Buschmann T,Ewald A,von Twickel A,Büschges A

    更新日期:2015-06-29 00:00:00

  • Systematic comparison of model polymer nanocomposite mechanics.

    abstract::Polymer nanocomposites render a range of outstanding materials from natural products such as silk, sea shells and bones, to synthesized nanoclay or carbon nanotube reinforced polymer systems. In contrast to the fast expanding interest in this type of material, the fundamental mechanisms of their mixing, phase behavior...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/11/5/055008

    authors: Xiao S,Peter C,Kremer K

    更新日期:2016-09-13 00:00:00

  • Reactive conducting polymers as actuating sensors and tactile muscles.

    abstract::Films of conducting polymers when used as electrodes in an electrolytic solution oxidize and reduce under the flow of anodic and cathodic currents, respectively. The electrochemical reactions induce conformational movements of the chains, generation or destruction of free volume and interchange of ions and solvent wit...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/3/3/035004

    authors: Otero TF

    更新日期:2008-09-01 00:00:00

  • Policy gradient optimization of controllers for natural dynamic mono-pedal gait.

    abstract::We have previously suggested a biologically-inspired natural dynamic controller for biped locomotion, which applies torque pulses to the different joints at particular phases of an internal phase variable. The parameters of the controller, including the timing and magnitude of the torque pulses and the dynamics of the...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab782a

    authors: Schallheim I,Zacksenhouse M

    更新日期:2020-03-25 00:00:00

  • Analytical model and stability analysis of the leading edge spar of a passively morphing ornithopter wing.

    abstract::This paper presents the stability analysis of the leading edge spar of a flapping wing unmanned air vehicle with a compliant spine inserted in it. The compliant spine is a mechanism that was designed to be flexible during the upstroke and stiff during the downstroke. Inserting a variable stiffness mechanism into the l...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/10/6/065003

    authors: Wissa A,Calogero J,Wereley N,Hubbard JE Jr,Frecker M

    更新日期:2015-10-26 00:00:00

  • Recent advances in superhydrophobic surfaces and their relevance to biology and medicine.

    abstract::By mimicking naturally occurring superhydrophobic surfaces, scientists can now realize artificial surfaces on which droplets of a few microliters of water are forced to assume an almost spherical shape and an extremely high contact angle. In recent decades, these surfaces have attracted much attention due to their tec...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章,评审

    doi:10.1088/1748-3190/11/1/011001

    authors: Ciasca G,Papi M,Businaro L,Campi G,Ortolani M,Palmieri V,Cedola A,De Ninno A,Gerardino A,Maulucci G,De Spirito M

    更新日期:2016-02-04 00:00:00

  • Wing rapid responses and aerodynamics of fruit flies during headwind gust perturbations.

    abstract::Insects are the main source of inspiration for flapping-wing micro air vehicles (FWMAVs). They frequently encounter wind gust perturbations in natural environments, and effectively cope with these perturbations. Here, we investigated the rapid gust response of flies to instruct the gust stability design of FWMAVs. A n...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab97fc

    authors: Gu M,Wu J,Zhang Y

    更新日期:2020-07-07 00:00:00

  • Effective locomotion at multiple stride frequencies using proprioceptive feedback on a legged microrobot.

    abstract::Limitations in actuation, sensing, and computation have forced small legged robots to rely on carefully tuned, mechanically mediated leg trajectories for effective locomotion. Recent advances in manufacturing, however, have enabled in such robots the ability for operation at multiple stride frequencies using multi-deg...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab295b

    authors: Doshi N,Jayaram K,Castellanos S,Kuindersma S,Wood RJ

    更新日期:2019-07-01 00:00:00

  • Effect of bladder wall thickness on miniature pneumatic artificial muscle performance.

    abstract::Pneumatic artificial muscles (PAMs) are actuators known for their high power to weight ratio, natural compliance and light weight. Due to these advantages, PAMs have been used for orthotic devices and robotic limbs. Small scale PAMs have the same advantages, as well as requiring greatly reduced volumes with potential ...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/10/5/055006

    authors: Pillsbury TE,Kothera CS,Wereley NM

    更新日期:2015-09-28 00:00:00

  • The axoneme, a biological template to design a swell energy recovery system.

    abstract::The axonemal micro-machinery, the axial skeleton and actuator of cilia and flagella of eukaryotic cells, is able to bend and twist and generates wave trains. We already demonstrated that it can be the template to construct an active trunk robot (Cibert 2013 Bioinspir. Biomim. 8 026006). The work presented in this pape...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/11/5/056019

    authors: Cibert C

    更新日期:2016-09-29 00:00:00

  • Self-propelled swimming of a flexible plunging foil near a solid wall.

    abstract::Numerical simulations are conducted to investigate the influences of a solid wall on the self-propelled swimming of a flexible plunging foil. It is found that the presence of a solid wall enhances the cruising speed, with the cost of increasing input power. Rigid foil can achieve high percentage increase in cruising s...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/11/4/046005

    authors: Dai L,He G,Zhang X

    更新日期:2016-07-05 00:00:00

  • A bio-inspired apposition compound eye machine vision sensor system.

    abstract::The Wyoming Information, Signal Processing, and Robotics Laboratory is developing a wide variety of bio-inspired vision sensors. We are interested in exploring the vision system of various insects and adapting some of their features toward the development of specialized vision sensors. We do not attempt to supplant tr...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/4/4/046002

    authors: Davis JD,Barrett SF,Wright CH,Wilcox M

    更新日期:2009-12-01 00:00:00

  • Design of a biomimetic robotic octopus arm.

    abstract::This paper reports the rationale and design of a robotic arm, as inspired by an octopus arm. The octopus arm shows peculiar features, such as the ability to bend in all directions, to produce fast elongations, and to vary its stiffness. The octopus achieves these unique motor skills, thanks to its peculiar muscular st...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/4/1/015006

    authors: Laschi C,Mazzolai B,Mattoli V,Cianchetti M,Dario P

    更新日期:2009-03-01 00:00:00

  • Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation.

    abstract::Neuronal stimulation is an intricate part of understanding insect flight behavior and control insect itself. In this study, we investigated the effects of electrical pulses applied to the brain and basalar muscle of the rhinoceros beetle (Trypoxylus dichotomus). To understand specific neuronal stimulation mechanisms, ...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/7/3/036021

    authors: Van Truong T,Byun D,Lavine LC,Emlen DJ,Park HC,Kim MJ

    更新日期:2012-09-01 00:00:00

  • A starfish robot based on soft and smart modular structure (SMS) actuated by SMA wires.

    abstract::This paper describes the design, fabrication and locomotion of a starfish robot whose locomotion principle is derived from a starfish. The starfish robot has a number of tentacles or arms extending from its central body in the form of a disk, like the topology of a real starfish. The arm, which is a soft and composite...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/11/5/056012

    authors: Jin H,Dong E,Alici G,Mao S,Min X,Liu C,Low KH,Yang J

    更新日期:2016-09-09 00:00:00

  • The function of the alula on engineered wings: a detailed experimental investigation of a bioinspired leading-edge device.

    abstract::Birds fly in dynamic flight conditions while maintaining aerodynamic efficiency. This agility is in part due to specialized feather systems that function as flow control devices during adverse conditions such as high-angle of attack maneuvers. In this paper, we present an engineered three-dimensional leading-edge devi...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab36ad

    authors: Ito MR,Duan C,Wissa AA

    更新日期:2019-08-29 00:00:00

  • Design and analysis of coiled fiber reinforced soft pneumatic actuator.

    abstract::Fiber reinforced elastomeric enclosures (FREEs) are soft pneumatic actuators that can contract and generate forces upon pressurization. Typical engineering applications utilize FREEs in their straight cylindrical configuration and derive actuation displacement and forces from their ends. However, there are several ins...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aab19c

    authors: Singh G,Xiao C,Hsiao-Wecksler ET,Krishnan G

    更新日期:2018-04-18 00:00:00

  • Biomimetic design processes in architecture: morphogenetic and evolutionary computational design.

    abstract::Design computation has profound impact on architectural design methods. This paper explains how computational design enables the development of biomimetic design processes specific to architecture, and how they need to be significantly different from established biomimetic processes in engineering disciplines. The pap...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/7/1/015003

    authors: Menges A

    更新日期:2012-03-01 00:00:00

  • Biodiversifying bioinspiration.

    abstract::Bioinspiration-using insights into the function of biological systems for the development of new engineering concepts-is already a successful and rapidly growing field. However, only a small portion of the world's biodiversity has thus far been considered as a potential source for engineering inspiration. This means t...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aac96a

    authors: Müller R,Abaid N,Boreyko JB,Fowlkes C,Goel AK,Grimm C,Jung S,Kennedy B,Murphy C,Cushing ND,Han JP

    更新日期:2018-07-03 00:00:00

  • A bio-inspired study on tidal energy extraction with flexible flapping wings.

    abstract::Previous research on the flexible structure of flapping wings has shown an improved propulsion performance in comparison to rigid wings. However, not much is known about this function in terms of power efficiency modification for flapping wing energy devices. In order to study the role of the flexible wing deformation...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/8/3/036011

    authors: Liu W,Xiao Q,Cheng F

    更新日期:2013-09-01 00:00:00

  • Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles.

    abstract::Recent developments in the design and propulsion of biomimetic autonomous underwater vehicles (AUVs) have focused on boxfish as models (e.g. Deng and Avadhanula 2005 Biomimetic micro underwater vehicle with oscillating fin propulsion: system design and force measurement Proc. 2005 IEEE Int. Conf. Robot. Auto. (Barcelo...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/3/3/034002

    authors: Blake RW,Ng H,Chan KH,Li J

    更新日期:2008-09-01 00:00:00

  • Laser Doppler sensing for blood vessel detection with a biologically inspired steerable needle.

    abstract::Puncturing blood vessels during percutaneous intervention in minimally invasive brain surgery can be a life threatening complication. Embedding a forward looking sensor in a rigid needle has been proposed to tackle this problem but, when using a rigid needle, the procedure needs to be interrupted and the needle extrac...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aaa6f4

    authors: Virdyawan V,Oldfield M,Rodriguez Y Baena F

    更新日期:2018-02-16 00:00:00

  • Creating bio-inspired hierarchical 3D-2D photonic stacks via planar lithography on self-assembled inverse opals.

    abstract::Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate e...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/8/4/045004

    authors: Burgess IB,Aizenberg J,Lončar M

    更新日期:2013-12-01 00:00:00

  • Design of the musculoskeletal leg [Formula: see text] based on the physiology of mono-articular and biarticular muscles in the human leg.

    abstract::In a lower extremity musculoskeletal leg, the actuation kinematics define the interaction of the actuators with each other and the environment. Design of such a kinematic chain is challenging due to the existence of the redundant biarticular actuators which simultaneously act on two joints, generating a parallel mecha...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab3896

    authors: Nejadfard A,Schütz S,Mianowski K,Vonwirth P,Berns K

    更新日期:2019-09-06 00:00:00

  • Self-healing polymer composites: mimicking nature to enhance performance.

    abstract::Autonomic self-healing materials, where initiation of repair is integral to the material, are being developed for engineering applications. This bio-inspired concept offers the designer an ability to incorporate secondary functional materials capable of counteracting service degradation whilst still achieving the prim...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章,评审

    doi:10.1088/1748-3182/2/1/P01

    authors: Trask RS,Williams HR,Bond IP

    更新日期:2007-03-01 00:00:00

  • Biotemplate synthesis of monodispersed iron phosphate hollow microspheres.

    abstract::Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe(3+), which provided the nucleation sites for growth of iron...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/5/1/016005

    authors: Cao F,Li D

    更新日期:2010-03-01 00:00:00

  • Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates.

    abstract::Nano-structured colorful zinc oxide (ZnO) replicas were produced using the wings of the Ideopsis similis butterfly as templates. The ZnO replicas we obtained exhibit iridescence, which was clearly observed under an optical microscope (OM). Field emission scanning electron microscope analysis shows that all the microst...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/1/3/003

    authors: Zhang W,Zhang D,Fan T,Ding J,Gu J,Guo Q,Ogawa H

    更新日期:2006-09-01 00:00:00

  • Bending continuous structures with SMAs: a novel robotic fish design.

    abstract::In this paper, we describe our research on bio-inspired locomotion systems using deformable structures and smart materials, concretely shape memory alloys (SMAs). These types of materials allow us to explore the possibility of building motor-less and gear-less robots. A swimming underwater fish-like robot has been dev...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/6/4/045005

    authors: Rossi C,Colorado J,Coral W,Barrientos A

    更新日期:2011-12-01 00:00:00