Laser Doppler sensing for blood vessel detection with a biologically inspired steerable needle.

Abstract:

:Puncturing blood vessels during percutaneous intervention in minimally invasive brain surgery can be a life threatening complication. Embedding a forward looking sensor in a rigid needle has been proposed to tackle this problem but, when using a rigid needle, the procedure needs to be interrupted and the needle extracted if a vessel is detected. As an alternative, we propose a novel optical method to detect a vessel in front of a steerable needle. The needle itself is based on a biomimetic, multi-segment design featuring four hollow working channels. Initially, a laser Doppler flowmetry probe is characterized in a tissue phantom with optical properties mimicking those of human gray matter. Experiments are performed to show that the probe has a 2.1 mm penetration depth and a 1 mm off-axis detection range for a blood vessel phantom with 5 mm s-1 flow velocity. This outcome demonstrates that the probe fulfills the minimum requirements for it to be used in conjunction with our needle. A pair of Doppler probes is then embedded in two of the four working channels of the needle and vessel reconstruction is performed using successive measurements to determine the depth and the off-axis position of the vessel from each laser Doppler probe. The off-axis position from each Doppler probe is then used to generate a 'detection circle' per probe, and vessel orientation is predicted using tangent lines between the two. The vessel reconstruction has a depth root mean square error (RMSE) of 0.3 mm and an RMSE of 15° in the angular prediction, showing real promise for a future clinical application of this detection system.

journal_name

Bioinspir Biomim

authors

Virdyawan V,Oldfield M,Rodriguez Y Baena F

doi

10.1088/1748-3190/aaa6f4

subject

Has Abstract

pub_date

2018-02-16 00:00:00

pages

026009

issue

2

eissn

1748-3182

issn

1748-3190

journal_volume

13

pub_type

杂志文章
  • Energy evaluation of a bio-inspired gait modulation method for quadrupedal locomotion.

    abstract::We have proposed a bio-inspired gait modulation method, by means of which a simulated quadruped model can successfully perform smooth, autonomous gait transitions from a walk to a trot to a gallop, as observed in animals. The model is equipped with a rhythm generator called a central pattern generator (CPG) for each l...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/10/4/046017

    authors: Fukuoka Y,Fukino K,Habu Y,Mori Y

    更新日期:2015-08-04 00:00:00

  • Bio-inspired sensing and actuating architectures for feedback control of civil structures.

    abstract::Civil structures, such as buildings and bridges, are constantly at risk of failure due to external environmental loads, such as earthquakes or strong winds. To minimize the effects of these loads, active feedback control systems have been proposed but such systems still face numerous challenges which impede their wide...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab033b

    authors: Peckens CA,Cook I,Fogg C

    更新日期:2019-02-27 00:00:00

  • A novel mechanism for emulating insect wing kinematics.

    abstract::A novel dual-differential four-bar flapping mechanism that can accurately emulate insect wing kinematics in all three degrees of freedom (translation, rotation and stroke plane deviation) is developed. The mechanism is specifically designed to be simple and scalable such that it can be utilized on an insect-based flap...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/7/3/036017

    authors: Seshadri P,Benedict M,Chopra I

    更新日期:2012-09-01 00:00:00

  • Systematic comparison of model polymer nanocomposite mechanics.

    abstract::Polymer nanocomposites render a range of outstanding materials from natural products such as silk, sea shells and bones, to synthesized nanoclay or carbon nanotube reinforced polymer systems. In contrast to the fast expanding interest in this type of material, the fundamental mechanisms of their mixing, phase behavior...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/11/5/055008

    authors: Xiao S,Peter C,Kremer K

    更新日期:2016-09-13 00:00:00

  • A simple running model with rolling contact and its role as a template for dynamic locomotion on a hexapod robot.

    abstract::We report on the development of a robot's dynamic locomotion based on a template which fits the robot's natural dynamics. The developed template is a low degree-of-freedom planar model for running with rolling contact, which we call rolling spring loaded inverted pendulum (R-SLIP). Originating from a reduced-order mod...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/9/4/046004

    authors: Huang KJ,Huang CK,Lin PC

    更新日期:2014-10-07 00:00:00

  • Effect of bladder wall thickness on miniature pneumatic artificial muscle performance.

    abstract::Pneumatic artificial muscles (PAMs) are actuators known for their high power to weight ratio, natural compliance and light weight. Due to these advantages, PAMs have been used for orthotic devices and robotic limbs. Small scale PAMs have the same advantages, as well as requiring greatly reduced volumes with potential ...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/10/5/055006

    authors: Pillsbury TE,Kothera CS,Wereley NM

    更新日期:2015-09-28 00:00:00

  • Design and analysis of coiled fiber reinforced soft pneumatic actuator.

    abstract::Fiber reinforced elastomeric enclosures (FREEs) are soft pneumatic actuators that can contract and generate forces upon pressurization. Typical engineering applications utilize FREEs in their straight cylindrical configuration and derive actuation displacement and forces from their ends. However, there are several ins...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aab19c

    authors: Singh G,Xiao C,Hsiao-Wecksler ET,Krishnan G

    更新日期:2018-04-18 00:00:00

  • The axoneme, a biological template to design a swell energy recovery system.

    abstract::The axonemal micro-machinery, the axial skeleton and actuator of cilia and flagella of eukaryotic cells, is able to bend and twist and generates wave trains. We already demonstrated that it can be the template to construct an active trunk robot (Cibert 2013 Bioinspir. Biomim. 8 026006). The work presented in this pape...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/11/5/056019

    authors: Cibert C

    更新日期:2016-09-29 00:00:00

  • Configuration optimization of bionic piezoelectric hair sensor for acoustic/tactile detection.

    abstract::Specialized sensory hairs are important biological sensors for arthropods to detect and recognize environmental conditions including acoustic, pressure and airflow signals. However, the present design methodology of such biomimic micro devices are mainly depending on shape mimicking, which greatly restricts their perf...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab8f6c

    authors: Wang Y,Zhao J,Xia Y,Liu P

    更新日期:2020-08-12 00:00:00

  • Separation control over a grooved surface inspired by dolphin skin.

    abstract::Over many decades the biological surfaces of aquatic swimmers have been studied for their potential as drag reducing surfaces. The hydrodynamic benefit of riblets, or grooves embedded parallel to the flow which appear on surfaces such as shark skin, have been well documented. However the skin of dolphins is embedded w...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa5770

    authors: Lang AW,Jones EM,Afroz F

    更新日期:2017-02-10 00:00:00

  • The dynamics of hovering flight in hummingbirds, insects and bats with implications for aerial robotics.

    abstract::We analyze the effects of morphology and wing kinematics on the performance of hovering flight. We present a simplified dynamical model with body translational and rotational degrees of freedom that incorporates the flapping, long-axis wing rotation and folding of the wing. To validate our simulation, we compare our r...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aaea56

    authors: Vejdani HR,Boerma DB,Swartz SM,Breuer KS

    更新日期:2018-11-09 00:00:00

  • Fluid-structure interaction modeling on a 3D ray-strengthened caudal fin.

    abstract::In this paper, we present a numerical model capable of solving the fluid-structure interaction problems involved in the dynamics of skeleton-reinforced fish fins. In this model, the fluid dynamics is simulated by solving the Navier-Stokes equations using a finite-volume method based on an overset, multi-block structur...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab0fbe

    authors: Shi G,Xiao Q,Zhu Q,Liao W

    更新日期:2019-04-10 00:00:00

  • Biotemplate synthesis of monodispersed iron phosphate hollow microspheres.

    abstract::Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe(3+), which provided the nucleation sites for growth of iron...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/5/1/016005

    authors: Cao F,Li D

    更新日期:2010-03-01 00:00:00

  • Effective locomotion at multiple stride frequencies using proprioceptive feedback on a legged microrobot.

    abstract::Limitations in actuation, sensing, and computation have forced small legged robots to rely on carefully tuned, mechanically mediated leg trajectories for effective locomotion. Recent advances in manufacturing, however, have enabled in such robots the ability for operation at multiple stride frequencies using multi-deg...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab295b

    authors: Doshi N,Jayaram K,Castellanos S,Kuindersma S,Wood RJ

    更新日期:2019-07-01 00:00:00

  • Controlling legs for locomotion-insights from robotics and neurobiology.

    abstract::Walking is the most common terrestrial form of locomotion in animals. Its great versatility and flexibility has led to many attempts at building walking machines with similar capabilities. The control of walking is an active research area both in neurobiology and robotics, with a large and growing body of work. This p...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章,评审

    doi:10.1088/1748-3190/10/4/041001

    authors: Buschmann T,Ewald A,von Twickel A,Büschges A

    更新日期:2015-06-29 00:00:00

  • Handling interference effects on foraging with bucket brigades.

    abstract::Many kinds of bio-inspired tasks have been tested with swarm robotics and task partitioning is one of the challenging subjects. In nature, it is well known that some colonies of social insects such as honeybees, termites, and ants use task partitioning strategies for their survival. In this paper, we demonstrate an ef...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa8293

    authors: Lee W,Kim D

    更新日期:2017-10-16 00:00:00

  • Nacre-mimetic bulk lamellar composites reinforced with high aspect ratio glass flakes.

    abstract::Nacre-mimetic epoxy matrix composites reinforced with readily available micron-sized high aspect ratio C-glass flakes were fabricated by a relatively simple, single-step, scalable, time, cost and man-power effective processing strategy: hot-press assisted slip casting (HASC). HASC enables the fabrication of preferenti...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/12/1/016002

    authors: Guner SN,Dericioglu AF

    更新日期:2016-12-05 00:00:00

  • Running up a wall: the role and challenges of dynamic climbing in enhancing multi-modal legged systems.

    abstract::Animals have demonstrated the ability to move through, across and over some of the most daunting environments on earth. This versatility and adaptability stems from their capacity to alter their locomotion dynamics and employ disparate locomotion modalities to suit the terrain at hand. As with modalities such as runni...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/10/2/025005

    authors: Miller BD,Rivera PR,Dickson JD,Clark JE

    更新日期:2015-03-26 00:00:00

  • A starfish robot based on soft and smart modular structure (SMS) actuated by SMA wires.

    abstract::This paper describes the design, fabrication and locomotion of a starfish robot whose locomotion principle is derived from a starfish. The starfish robot has a number of tentacles or arms extending from its central body in the form of a disk, like the topology of a real starfish. The arm, which is a soft and composite...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/11/5/056012

    authors: Jin H,Dong E,Alici G,Mao S,Min X,Liu C,Low KH,Yang J

    更新日期:2016-09-09 00:00:00

  • A pressure difference sensor inspired by fish canal lateral line.

    abstract::It is of interest to exploit the insight from the lateral line system of fish for flow sensing applications. In this paper, a novel fish canal lateral line-inspired pressure difference sensor is proposed by embedding an ionic polymer-metal composite (IPMC) sensor within a canal filled with viscous fluid. Such a sensor...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab2fa8

    authors: Sharif MA,Tan X

    更新日期:2019-07-29 00:00:00

  • Design and modelling of an engineered bacteria-based, pressure-sensitive soil.

    abstract::In this paper, we describe the first steps in the design of a synthetic biological system based on the use of genetically modified bacteria to detect elevated pressures in soils and respond by cementing soil particles. Such a system might, for example, enable a self- constructed foundation to form in response to load ...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aabe15

    authors: Dade-Robertson M,Mitrani H,Corral JR,Zhang M,Hernan L,Guyet A,Wipat A

    更新日期:2018-05-25 00:00:00

  • Bio-inspired annelid robot: a dielectric elastomer actuated soft robot.

    abstract::Biologically inspired robots with inherent softness and body compliance increasingly attract attention in the field of robotics. Aimed at solving existing problems with soft robots, regarding actuation technology and biological principles, this paper presents a soft bio-inspired annelid robot driven by dielectric elas...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa50a5

    authors: Xu L,Chen HQ,Zou J,Dong WT,Gu GY,Zhu LM,Zhu XY

    更新日期:2017-01-31 00:00:00

  • On burst-and-coast swimming performance in fish-like locomotion.

    abstract::Burst-and-coast swimming performance in fish-like locomotion is studied via two-dimensional numerical simulation. The numerical method used is the collocated finite-volume adaptive Cartesian cut-cell method developed previously. The NACA00xx airfoil shape is used as an equilibrium fish-body form. Swimming in a burst-a...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/4/3/036001

    authors: Chung MH

    更新日期:2009-09-01 00:00:00

  • Salmon jumping: behavior, kinematics and optimal conditions, with possible implications for fish passageway design.

    abstract::Behavioral and kinematic properties and capacities of wild migratory salmonid fishes swimming upstream and jumping up waterfalls generally have played only minor roles in the design and construction of passageways intended to help these fishes get past dams and other human-made obstacles blocking their movements. This...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/5/3/035006

    authors: Lauritzen DV,Hertel FS,Jordan LK,Gordon MS

    更新日期:2010-09-01 00:00:00

  • A design for a dynamic biomimetic sonarhead inspired by horseshoe bats.

    abstract::The noseleaf and pinnae of horseshoe bats (Rhinolophus ferrumequinum) have both been shown to actively deform during biosonar operation. Since these baffle structures directly affect the properties of the animals biosonar system, this work mimics horseshoe bat sonar system with the goal of developing a platform to stu...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aac788

    authors: Caspers P,Müller R

    更新日期:2018-06-26 00:00:00

  • Bending continuous structures with SMAs: a novel robotic fish design.

    abstract::In this paper, we describe our research on bio-inspired locomotion systems using deformable structures and smart materials, concretely shape memory alloys (SMAs). These types of materials allow us to explore the possibility of building motor-less and gear-less robots. A swimming underwater fish-like robot has been dev...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/6/4/045005

    authors: Rossi C,Colorado J,Coral W,Barrientos A

    更新日期:2011-12-01 00:00:00

  • Clarity of objectives and working principles enhances the success of biomimetic programs.

    abstract::Biomimetics, the transfer of functional principles from living systems into product designs, is increasingly being utilized by engineers. Nevertheless, recurring problems must be overcome if it is to avoid becoming a short-lived fad. Here we assess the efficiency and suitability of methods typically employed by examin...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa86ff

    authors: Wolff JO,Wells D,Reid CR,Blamires SJ

    更新日期:2017-09-26 00:00:00

  • Burst-and-coast swimming is not always energetically beneficial in fish (Hemigrammus bleheri).

    abstract::Burst-and-coast swimming is an intermittent mode of locomotion used by various fish species. The intermittent gait has been associated with certain advantages such as stabilizing the visual field, improved sensing ability, and reduced energy expenditure. We investigate burst-coast swimming in rummy nose tetra fish (He...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/abb521

    authors: Ashraf I,Van Wassenbergh S,Verma S

    更新日期:2020-11-07 00:00:00

  • Genetic engineered color silk: fabrication of a photonics material through a bioassisted technology.

    abstract::Silk produced by the silkworm Bombyx mori is an attractive material because of its luster, smooth and soft texture, conspicuous mechanical strength, good biocompatibility, slow biodegradation, and carbon neutral synthesis. Silkworms have been domesticated and bred for production of better quality and quantity of silk,...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章,评审

    doi:10.1088/1748-3190/aabbe9

    authors: Shimizu K

    更新日期:2018-05-15 00:00:00

  • Flytrap-inspired robot using structurally integrated actuation based on bistability and a developable surface.

    abstract::The Venus flytrap uses bistability, the structural characteristic of its leaf, to actuate the leaf's rapid closing motion for catching its prey. This paper presents a flytrap-inspired robot and novel actuation mechanism that exploits the structural characteristics of this structure and a developable surface. We focus ...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/9/3/036004

    authors: Kim SW,Koh JS,Lee JG,Ryu J,Cho M,Cho KJ

    更新日期:2014-09-01 00:00:00