A novel mechanism for emulating insect wing kinematics.

Abstract:

:A novel dual-differential four-bar flapping mechanism that can accurately emulate insect wing kinematics in all three degrees of freedom (translation, rotation and stroke plane deviation) is developed. The mechanism is specifically designed to be simple and scalable such that it can be utilized on an insect-based flapping wing micro air vehicle. Kinematic formulations for the wing stroke position, pitch angle and coning angle for this model are derived from first principles and compared with a 3D simulation. A benchtop flapping mechanism based on this model was designed and built, which was also equipped with a balance for force measurements. 3D motion capture tests were conducted on this setup to demonstrate the capability of generating complex figure-of-eight flapping motions along with dynamic pitching. The dual-differential four-bar mechanism was implemented on a light-weight vehicle that demonstrated tethered hover.

journal_name

Bioinspir Biomim

authors

Seshadri P,Benedict M,Chopra I

doi

10.1088/1748-3182/7/3/036017

subject

Has Abstract

pub_date

2012-09-01 00:00:00

pages

036017

issue

3

eissn

1748-3182

issn

1748-3190

journal_volume

7

pub_type

杂志文章
  • On the energetics of quadrupedal running: predicting the metabolic cost of transport via a flexible-torso model.

    abstract::In this paper, the effect of torso flexibility on the energetics of quadrupedal bounding is examined in a template setting. Two reductive sagittal-plane models, one with a rigid, non-deformable torso and one with a flexible, unactuated torso are proposed. Both models feature non-trivial leg mass and inertia to capture...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/10/5/056008

    authors: Cao Q,Poulakakis I

    更新日期:2015-09-03 00:00:00

  • A starfish robot based on soft and smart modular structure (SMS) actuated by SMA wires.

    abstract::This paper describes the design, fabrication and locomotion of a starfish robot whose locomotion principle is derived from a starfish. The starfish robot has a number of tentacles or arms extending from its central body in the form of a disk, like the topology of a real starfish. The arm, which is a soft and composite...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/11/5/056012

    authors: Jin H,Dong E,Alici G,Mao S,Min X,Liu C,Low KH,Yang J

    更新日期:2016-09-09 00:00:00

  • Modeling and control of flapping wing micro aerial vehicles.

    abstract::Research in robots that emulate insect flight or micro aerial vehicles (MAV) has gained significant momentum in the past decade owing to the vast number of fields they could be employed in. In this paper, key modeling and control aspects of a flapping wing MAV in hover have been discussed. Models of varying complexity...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aafc3c

    authors: Biswal S,Mignolet M,Rodriguez AA

    更新日期:2019-01-31 00:00:00

  • A pressure difference sensor inspired by fish canal lateral line.

    abstract::It is of interest to exploit the insight from the lateral line system of fish for flow sensing applications. In this paper, a novel fish canal lateral line-inspired pressure difference sensor is proposed by embedding an ionic polymer-metal composite (IPMC) sensor within a canal filled with viscous fluid. Such a sensor...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab2fa8

    authors: Sharif MA,Tan X

    更新日期:2019-07-29 00:00:00

  • Effective locomotion at multiple stride frequencies using proprioceptive feedback on a legged microrobot.

    abstract::Limitations in actuation, sensing, and computation have forced small legged robots to rely on carefully tuned, mechanically mediated leg trajectories for effective locomotion. Recent advances in manufacturing, however, have enabled in such robots the ability for operation at multiple stride frequencies using multi-deg...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab295b

    authors: Doshi N,Jayaram K,Castellanos S,Kuindersma S,Wood RJ

    更新日期:2019-07-01 00:00:00

  • Controlling legs for locomotion-insights from robotics and neurobiology.

    abstract::Walking is the most common terrestrial form of locomotion in animals. Its great versatility and flexibility has led to many attempts at building walking machines with similar capabilities. The control of walking is an active research area both in neurobiology and robotics, with a large and growing body of work. This p...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章,评审

    doi:10.1088/1748-3190/10/4/041001

    authors: Buschmann T,Ewald A,von Twickel A,Büschges A

    更新日期:2015-06-29 00:00:00

  • Self-assembled hierarchically structured organic-inorganic composite systems.

    abstract::Designing bio-inspired, multifunctional organic-inorganic composite materials is one of the most popular current research objectives. Due to the high complexity of biocomposite structures found in nacre and bone, for example, a one-pot scalable and versatile synthesis approach addressing structural key features of bio...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章,评审

    doi:10.1088/1748-3190/11/3/035002

    authors: Tritschler U,Cölfen H

    更新日期:2016-05-13 00:00:00

  • Energy efficient hopping with Hill-type muscle properties on segmented legs.

    abstract::The intrinsic muscular properties of biological muscles are the main source of stabilization during locomotion, and superior biological performance is obtained with low energy costs. Man-made actuators struggle to reach the same energy efficiency seen in biological muscles. Here, we compare muscle properties within a ...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/11/3/036002

    authors: Rosendo A,Iida F

    更新日期:2016-04-12 00:00:00

  • Autonomous spacecraft landing through human pre-attentive vision.

    abstract::In this work, we exploit a computational model of human pre-attentive vision to guide the descent of a spacecraft on extraterrestrial bodies. Providing the spacecraft with high degrees of autonomy is a challenge for future space missions. Up to present, major effort in this research field has been concentrated in haza...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/7/2/025007

    authors: Schiavone G,Izzo D,Simões LF,de Croon GC

    更新日期:2012-06-01 00:00:00

  • The function of the alula on engineered wings: a detailed experimental investigation of a bioinspired leading-edge device.

    abstract::Birds fly in dynamic flight conditions while maintaining aerodynamic efficiency. This agility is in part due to specialized feather systems that function as flow control devices during adverse conditions such as high-angle of attack maneuvers. In this paper, we present an engineered three-dimensional leading-edge devi...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab36ad

    authors: Ito MR,Duan C,Wissa AA

    更新日期:2019-08-29 00:00:00

  • Self-propelled swimming of a flexible plunging foil near a solid wall.

    abstract::Numerical simulations are conducted to investigate the influences of a solid wall on the self-propelled swimming of a flexible plunging foil. It is found that the presence of a solid wall enhances the cruising speed, with the cost of increasing input power. Rigid foil can achieve high percentage increase in cruising s...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/11/4/046005

    authors: Dai L,He G,Zhang X

    更新日期:2016-07-05 00:00:00

  • Recent advances in superhydrophobic surfaces and their relevance to biology and medicine.

    abstract::By mimicking naturally occurring superhydrophobic surfaces, scientists can now realize artificial surfaces on which droplets of a few microliters of water are forced to assume an almost spherical shape and an extremely high contact angle. In recent decades, these surfaces have attracted much attention due to their tec...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章,评审

    doi:10.1088/1748-3190/11/1/011001

    authors: Ciasca G,Papi M,Businaro L,Campi G,Ortolani M,Palmieri V,Cedola A,De Ninno A,Gerardino A,Maulucci G,De Spirito M

    更新日期:2016-02-04 00:00:00

  • The application of conducting polymers to a biorobotic fin propulsor.

    abstract::Conducting polymer actuators based on polypyrrole are being developed for use in biorobotic fins that are designed to create and control forces like the pectoral fin of the bluegill sunfish (Lepomis macrochirus). It is envisioned that trilayer bending actuators will be used within, and as, the fin's webbing to create ...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章,评审

    doi:10.1088/1748-3182/2/2/S02

    authors: Tangorra J,Anquetil P,Fofonoff T,Chen A,Del Zio M,Hunter I

    更新日期:2007-06-01 00:00:00

  • Effect of clap-and-fling mechanism on force generation in flapping wing micro aerial vehicles.

    abstract::The clap-and-fling effect, first observed in a number of insects, serves as a lift-enhancing mechanism for bio-inspired flapping wing micro aerial vehicles (MAV). In our comprehensive literature survey, we observe that the effect manifests differently in insects and contemporary MAVs; insects have active control over ...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab0477

    authors: Jadhav SS,Lua KB,Tay WB

    更新日期:2019-02-27 00:00:00

  • Clarity of objectives and working principles enhances the success of biomimetic programs.

    abstract::Biomimetics, the transfer of functional principles from living systems into product designs, is increasingly being utilized by engineers. Nevertheless, recurring problems must be overcome if it is to avoid becoming a short-lived fad. Here we assess the efficiency and suitability of methods typically employed by examin...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa86ff

    authors: Wolff JO,Wells D,Reid CR,Blamires SJ

    更新日期:2017-09-26 00:00:00

  • A mechanical analysis of woodpecker drumming and its application to shock-absorbing systems.

    abstract::A woodpecker is known to drum the hard woody surface of a tree at a rate of 18 to 22 times per second with a deceleration of 1200 g, yet with no sign of blackout or brain damage. As a model in nature, a woodpecker is studied to find clues to develop a shock-absorbing system for micromachined devices. Its advanced shoc...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/6/1/016003

    authors: Yoon SH,Park S

    更新日期:2011-03-01 00:00:00

  • Morpho peleides butterfly wing imprints as structural colour stamp.

    abstract::This study presents the replication of a color-causing nanostructure based on the upper laminae of numerous cover scales of Morpho peleides butterfly wings and obtained solely by imprinting their upper-wing surfaces. Our results indicate that a simple casting technique using a novel integrated release agent can obtain...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/11/1/016006

    authors: Zobl S,Salvenmoser W,Schwerte T,Gebeshuber IC,Schreiner M

    更新日期:2016-02-02 00:00:00

  • Biomimetic design processes in architecture: morphogenetic and evolutionary computational design.

    abstract::Design computation has profound impact on architectural design methods. This paper explains how computational design enables the development of biomimetic design processes specific to architecture, and how they need to be significantly different from established biomimetic processes in engineering disciplines. The pap...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/7/1/015003

    authors: Menges A

    更新日期:2012-03-01 00:00:00

  • Realization of a Push-Me-Pull-You swimmer at low Reynolds numbers.

    abstract::Locomotion at low Reynolds numbers encounters stringent physical constraints due to the dominance of viscous over inertial forces. A variety of swimming microorganisms has demonstrated diverse strategies to generate self-propulsion in the absence of inertia. In particular, ameboid and euglenoid movements exploit shape...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aba2b9

    authors: Silverberg O,Demir E,Mishler G,Hosoume B,Trivedi NR,Tisch C,Plascencia D,Pak OS,Araci IE

    更新日期:2020-07-03 00:00:00

  • Walking with perturbations: a guide for biped humans and robots.

    abstract::This paper provides an update on the neural control of bipedal walking in relation to bioinspired models and robots. It is argued that most current models or robots are based on the construct of a symmetrical central pattern generator (CPG). However, new evidence suggests that CPG functioning is basically asymmetrical...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aada54

    authors: Duysens J,Forner-Cordero A

    更新日期:2018-09-04 00:00:00

  • Acoustic pathways revealed: simulated sound transmission and reception in Cuvier's beaked whale (Ziphius cavirostris).

    abstract::The finite element modeling (FEM) space reported here contains the head of a simulated whale based on CT data sets as well as physical measurements of sound-propagation characteristics of actual tissue samples. Simulated sound sources placed inside and outside of an adult male Cuvier's beaked whale (Ziphius cavirostri...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/3/1/016001

    authors: Cranford TW,Krysl P,Hildebrand JA

    更新日期:2008-03-01 00:00:00

  • Nacre-mimetic bulk lamellar composites reinforced with high aspect ratio glass flakes.

    abstract::Nacre-mimetic epoxy matrix composites reinforced with readily available micron-sized high aspect ratio C-glass flakes were fabricated by a relatively simple, single-step, scalable, time, cost and man-power effective processing strategy: hot-press assisted slip casting (HASC). HASC enables the fabrication of preferenti...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/12/1/016002

    authors: Guner SN,Dericioglu AF

    更新日期:2016-12-05 00:00:00

  • Investigating the efficiency of a bio-inspired insect repellent surface structure.

    abstract::Most insects with smooth or hairy adhesive pads have very little problems in attaching to smooth substrates. A careful selection of surface roughness, however, can effectively limit the contact area of the adhesive organs with the surface. In comparison to conventional toxin-based insect repelling methods, biologicall...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aad061

    authors: Graf C,Kesel AB,Gorb EV,Gorb SN,Dirks JH

    更新日期:2018-07-31 00:00:00

  • Determination of spatial fidelity required to accurately mimic the flight dynamics of a bat.

    abstract::Bats possess unique flight capabilities enabled by their wing morphology. While the articulated bone structure and flexible membrane constituting the wing are known to play a critical role in aerodynamic performance, the relationship has never been robustly quantified. Characterization of the sensitivity between preci...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab3e2a

    authors: Windes P,Tafti DK,Müller R

    更新日期:2019-09-24 00:00:00

  • Handling interference effects on foraging with bucket brigades.

    abstract::Many kinds of bio-inspired tasks have been tested with swarm robotics and task partitioning is one of the challenging subjects. In nature, it is well known that some colonies of social insects such as honeybees, termites, and ants use task partitioning strategies for their survival. In this paper, we demonstrate an ef...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa8293

    authors: Lee W,Kim D

    更新日期:2017-10-16 00:00:00

  • Bio-inspired annelid robot: a dielectric elastomer actuated soft robot.

    abstract::Biologically inspired robots with inherent softness and body compliance increasingly attract attention in the field of robotics. Aimed at solving existing problems with soft robots, regarding actuation technology and biological principles, this paper presents a soft bio-inspired annelid robot driven by dielectric elas...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa50a5

    authors: Xu L,Chen HQ,Zou J,Dong WT,Gu GY,Zhu LM,Zhu XY

    更新日期:2017-01-31 00:00:00

  • From falling to flying: the path to powered flight of a robotic samara nano air vehicle.

    abstract::This paper details the development of a nano-scale (>15 cm) robotic samara, or winged seed. The design of prototypes inspired by naturally occurring geometries is presented along with a detailed experimental process which elucidates similarities between mechanical and robotic samara flight dynamics. The helical trajec...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/5/4/045009

    authors: Ulrich ER,Pines DJ,Humbert JS

    更新日期:2010-12-01 00:00:00

  • Bio-inspired sensing and actuating architectures for feedback control of civil structures.

    abstract::Civil structures, such as buildings and bridges, are constantly at risk of failure due to external environmental loads, such as earthquakes or strong winds. To minimize the effects of these loads, active feedback control systems have been proposed but such systems still face numerous challenges which impede their wide...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab033b

    authors: Peckens CA,Cook I,Fogg C

    更新日期:2019-02-27 00:00:00

  • A bioinspired soft manipulator for minimally invasive surgery.

    abstract::This paper introduces a novel, bioinspired manipulator for minimally invasive surgery (MIS). The manipulator is entirely composed of soft materials, and it has been designed to provide similar motion capabilities as the octopus's arm in order to reach the surgical target while exploiting its whole length to actively i...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/10/3/035008

    authors: Ranzani T,Gerboni G,Cianchetti M,Menciassi A

    更新日期:2015-05-13 00:00:00

  • Theoretical and numerical studies on a five-ray flexible pectoral fin during labriform swimming.

    abstract::Natural fish have evolved with an excellent swimming performance after millions of years. Based on the flexible features of the pectoral fin, this paper focuses on the kinematics and hydrodynamics of the fin when fish are swimming stably in still water in labriform mode. The locomotion mechanism based on the morpholog...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab550e

    authors: Weng J,Zhu Y,Du X,Yang G,Hu D

    更新日期:2019-12-04 00:00:00