Acoustic pathways revealed: simulated sound transmission and reception in Cuvier's beaked whale (Ziphius cavirostris).

Abstract:

:The finite element modeling (FEM) space reported here contains the head of a simulated whale based on CT data sets as well as physical measurements of sound-propagation characteristics of actual tissue samples. Simulated sound sources placed inside and outside of an adult male Cuvier's beaked whale (Ziphius cavirostris) reveal likely sound propagation pathways into and out of the head. Two separate virtual sound sources that were located at the left and right phonic lips produced beams that converged just outside the head. This result supports the notion that dual sound sources can interfere constructively to form a biologically useful and, in fact, excellent sonar beam in front of the animal. The most intriguing FEM results concern pathways by which sounds reach the ears. The simulations reveal a previously undescribed 'gular pathway' for sound reception in Ziphius. Propagated sound pressure waves enter the head from below and between the lower jaws, pass through an opening created by the absence of the medial bony wall of the posterior mandibles, and continue toward the bony ear complexes through the internal mandibular fat bodies. This new pathway has implications for understanding the evolution of underwater hearing in odontocetes. Our model also provides evidence for receive beam directionality, off-axis acoustic shadowing and a plausible mechanism for the long-standing orthodox sound reception pathway in odontocetes. The techniques developed for this study can be used to study acoustic perturbation in a wide variety of marine organisms.

journal_name

Bioinspir Biomim

authors

Cranford TW,Krysl P,Hildebrand JA

doi

10.1088/1748-3182/3/1/016001

subject

Has Abstract

pub_date

2008-03-01 00:00:00

pages

016001

eissn

1748-3182

issn

1748-3190

pii

S1748-3182(08)56067-4

journal_volume

3

pub_type

杂志文章
  • Handling interference effects on foraging with bucket brigades.

    abstract::Many kinds of bio-inspired tasks have been tested with swarm robotics and task partitioning is one of the challenging subjects. In nature, it is well known that some colonies of social insects such as honeybees, termites, and ants use task partitioning strategies for their survival. In this paper, we demonstrate an ef...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa8293

    authors: Lee W,Kim D

    更新日期:2017-10-16 00:00:00

  • A simple running model with rolling contact and its role as a template for dynamic locomotion on a hexapod robot.

    abstract::We report on the development of a robot's dynamic locomotion based on a template which fits the robot's natural dynamics. The developed template is a low degree-of-freedom planar model for running with rolling contact, which we call rolling spring loaded inverted pendulum (R-SLIP). Originating from a reduced-order mod...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/9/4/046004

    authors: Huang KJ,Huang CK,Lin PC

    更新日期:2014-10-07 00:00:00

  • Modeling and control of flapping wing micro aerial vehicles.

    abstract::Research in robots that emulate insect flight or micro aerial vehicles (MAV) has gained significant momentum in the past decade owing to the vast number of fields they could be employed in. In this paper, key modeling and control aspects of a flapping wing MAV in hover have been discussed. Models of varying complexity...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aafc3c

    authors: Biswal S,Mignolet M,Rodriguez AA

    更新日期:2019-01-31 00:00:00

  • Biomimetic design processes in architecture: morphogenetic and evolutionary computational design.

    abstract::Design computation has profound impact on architectural design methods. This paper explains how computational design enables the development of biomimetic design processes specific to architecture, and how they need to be significantly different from established biomimetic processes in engineering disciplines. The pap...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/7/1/015003

    authors: Menges A

    更新日期:2012-03-01 00:00:00

  • Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV.

    abstract::Birds demonstrate that flapping-wing flight (FWF) is a versatile flight mode, compatible with hovering, forward flight and gliding to save energy. This extended flight domain would be especially useful on mini-UAVs. However, design is challenging because aerodynamic efficiency is conditioned by complex movements of th...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/2/4/002

    authors: de Margerie E,Mouret JB,Doncieux S,Meyer JA

    更新日期:2007-12-01 00:00:00

  • Derivation of simple rules for complex flow vector fields on the lower part of the human face for robot face design.

    abstract::It is quite difficult for android robots to replicate the numerous and various types of human facial expressions owing to limitations in terms of space, mechanisms, and materials. This situation could be improved with greater knowledge regarding these expressions and their deformation rules, i.e. by using the biomimet...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa8f33

    authors: Ishihara H,Ota N,Asada M

    更新日期:2017-11-27 00:00:00

  • On burst-and-coast swimming performance in fish-like locomotion.

    abstract::Burst-and-coast swimming performance in fish-like locomotion is studied via two-dimensional numerical simulation. The numerical method used is the collocated finite-volume adaptive Cartesian cut-cell method developed previously. The NACA00xx airfoil shape is used as an equilibrium fish-body form. Swimming in a burst-a...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/4/3/036001

    authors: Chung MH

    更新日期:2009-09-01 00:00:00

  • Morpho peleides butterfly wing imprints as structural colour stamp.

    abstract::This study presents the replication of a color-causing nanostructure based on the upper laminae of numerous cover scales of Morpho peleides butterfly wings and obtained solely by imprinting their upper-wing surfaces. Our results indicate that a simple casting technique using a novel integrated release agent can obtain...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/11/1/016006

    authors: Zobl S,Salvenmoser W,Schwerte T,Gebeshuber IC,Schreiner M

    更新日期:2016-02-02 00:00:00

  • Advantages of aquatic animals as models for bio-inspired drones over present AUV technology.

    abstract::Robotic systems are becoming more ubiquitous, whether on land, in the air, or in water. In the aquatic realm, aquatic drones including ROVs (remotely operated vehicles) and AUVs (autonomous underwater vehicles) have opened new opportunities to investigate the ocean depths. However, these technologies have limitations ...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab5a34

    authors: Fish FE

    更新日期:2020-02-07 00:00:00

  • On the energetics of quadrupedal running: predicting the metabolic cost of transport via a flexible-torso model.

    abstract::In this paper, the effect of torso flexibility on the energetics of quadrupedal bounding is examined in a template setting. Two reductive sagittal-plane models, one with a rigid, non-deformable torso and one with a flexible, unactuated torso are proposed. Both models feature non-trivial leg mass and inertia to capture...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/10/5/056008

    authors: Cao Q,Poulakakis I

    更新日期:2015-09-03 00:00:00

  • Application of reduced sensor movement sequences as a precursor for search area partitioning and a selection of discrete EEV contour-ring fragments for active electrolocation.

    abstract::In addition to their visual sense, weakly electric fish use active electrolocation to detect and analyse objects in their nearby environment. Their ability to generate and sense electric fields combined with scanning-like swimming movements are intended to extract further parameters like the size, shape and material p...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aae23f

    authors: Wolf-Homeyer S,Engelmann J,Schneider A

    更新日期:2018-10-16 00:00:00

  • Dynamic traversal of large gaps by insects and legged robots reveals a template.

    abstract::It is well known that animals can use neural and sensory feedback via vision, tactile sensing, and echolocation to negotiate obstacles. Similarly, most robots use deliberate or reactive planning to avoid obstacles, which relies on prior knowledge or high-fidelity sensing of the environment. However, during dynamic loc...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aaa2cd

    authors: Gart SW,Yan C,Othayoth R,Ren Z,Li C

    更新日期:2018-02-02 00:00:00

  • Mesocarp of Brazil nut (Bertholletia excelsa) as inspiration for new impact resistant materials.

    abstract::Aiming to produce bioinspired impact and puncture resistant materials, the mesocarp of the Brazil nut (Bertholletia excelsa) was characterized. The mesocarp composition was investigated by chemical extraction and its microstructure was analyzed by optical microscopy and microtomography (microCT). A compression test ev...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab2298

    authors: Sonego M,Fleck C,Pessan LA

    更新日期:2019-07-03 00:00:00

  • Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles.

    abstract::Recent developments in the design and propulsion of biomimetic autonomous underwater vehicles (AUVs) have focused on boxfish as models (e.g. Deng and Avadhanula 2005 Biomimetic micro underwater vehicle with oscillating fin propulsion: system design and force measurement Proc. 2005 IEEE Int. Conf. Robot. Auto. (Barcelo...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/3/3/034002

    authors: Blake RW,Ng H,Chan KH,Li J

    更新日期:2008-09-01 00:00:00

  • Artificial Manduca sexta forewings for flapping-wing micro aerial vehicles: how wing structure affects performance.

    abstract::A novel approach to fabricating and testing artificial insect wings has been developed. Utilizing these new techniques, locally harvested hawk moth (Manduca sexta) forewings are compared to engineered forewings with varying wing structures. A number of small, flexible engineered forewings were fabricated with identica...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa7ea3

    authors: Moses KC,Michaels SC,Willis M,Quinn RD

    更新日期:2017-09-26 00:00:00

  • A novel mechanism for emulating insect wing kinematics.

    abstract::A novel dual-differential four-bar flapping mechanism that can accurately emulate insect wing kinematics in all three degrees of freedom (translation, rotation and stroke plane deviation) is developed. The mechanism is specifically designed to be simple and scalable such that it can be utilized on an insect-based flap...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/7/3/036017

    authors: Seshadri P,Benedict M,Chopra I

    更新日期:2012-09-01 00:00:00

  • Design of a biomimetic robotic octopus arm.

    abstract::This paper reports the rationale and design of a robotic arm, as inspired by an octopus arm. The octopus arm shows peculiar features, such as the ability to bend in all directions, to produce fast elongations, and to vary its stiffness. The octopus achieves these unique motor skills, thanks to its peculiar muscular st...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/4/1/015006

    authors: Laschi C,Mazzolai B,Mattoli V,Cianchetti M,Dario P

    更新日期:2009-03-01 00:00:00

  • A novel distributed swarm control strategy based on coupled signal oscillators.

    abstract::The miniaturization of microrobots is accompanied by limitations of signaling, sensing and agility. Control of a swarm of simple microrobots has to cope with such constraints in a way which still guarantees the accomplishment of a task. A recently proposed communication method, which is based on the coupling of signal...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/2/3/002

    authors: Hartbauer M,Römer H

    更新日期:2007-09-01 00:00:00

  • Emergence of behavior through morphology: a case study on an octopus inspired manipulator.

    abstract::The complex motion abilities of the Octopus vulgaris have been an intriguing research topic for biologists and roboticists alike. Various studies have been conducted on the underlying control architectures employed by these high dimensional biological organisms. Researchers have attempted to replicate these architectu...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab1621

    authors: Thuruthel TG,Falotico E,Renda F,Flash T,Laschi C

    更新日期:2019-04-24 00:00:00

  • Biarticular elements as a contributor to energy efficiency: biomechanical review and application in bio-inspired robotics.

    abstract::Despite the increased interest in exoskeleton research in the last decades, not much progress has been made on the successful reduction of user effort. In humans, biarticular elements have been identified as one of the reasons for the energy economy of locomotion. This document gives an extensive literature overview c...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章,评审

    doi:10.1088/1748-3190/aa806e

    authors: Junius K,Moltedo M,Cherelle P,Rodriguez-Guerrero C,Vanderborght B,Lefeber D

    更新日期:2017-11-08 00:00:00

  • Walking with perturbations: a guide for biped humans and robots.

    abstract::This paper provides an update on the neural control of bipedal walking in relation to bioinspired models and robots. It is argued that most current models or robots are based on the construct of a symmetrical central pattern generator (CPG). However, new evidence suggests that CPG functioning is basically asymmetrical...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aada54

    authors: Duysens J,Forner-Cordero A

    更新日期:2018-09-04 00:00:00

  • Design and modelling of an engineered bacteria-based, pressure-sensitive soil.

    abstract::In this paper, we describe the first steps in the design of a synthetic biological system based on the use of genetically modified bacteria to detect elevated pressures in soils and respond by cementing soil particles. Such a system might, for example, enable a self- constructed foundation to form in response to load ...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aabe15

    authors: Dade-Robertson M,Mitrani H,Corral JR,Zhang M,Hernan L,Guyet A,Wipat A

    更新日期:2018-05-25 00:00:00

  • Optimal propulsive flapping in Stokes flows.

    abstract::Swimming fish and flying insects use the flapping of fins and wings to generate thrust. In contrast, microscopic organisms typically deform their appendages in a wavelike fashion. Since a flapping motion with two degrees of freedom is able, in theory, to produce net forces from a time-periodic actuation at all Reynold...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/9/1/016001

    authors: Was L,Lauga E

    更新日期:2014-03-01 00:00:00

  • A mechanical analysis of woodpecker drumming and its application to shock-absorbing systems.

    abstract::A woodpecker is known to drum the hard woody surface of a tree at a rate of 18 to 22 times per second with a deceleration of 1200 g, yet with no sign of blackout or brain damage. As a model in nature, a woodpecker is studied to find clues to develop a shock-absorbing system for micromachined devices. Its advanced shoc...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/6/1/016003

    authors: Yoon SH,Park S

    更新日期:2011-03-01 00:00:00

  • Autonomous spacecraft landing through human pre-attentive vision.

    abstract::In this work, we exploit a computational model of human pre-attentive vision to guide the descent of a spacecraft on extraterrestrial bodies. Providing the spacecraft with high degrees of autonomy is a challenge for future space missions. Up to present, major effort in this research field has been concentrated in haza...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/7/2/025007

    authors: Schiavone G,Izzo D,Simões LF,de Croon GC

    更新日期:2012-06-01 00:00:00

  • Biomimetic optimisation of branched fibre-reinforced composites in engineering by detailed analyses of biological concept generators.

    abstract::The aim of this study is the biomimetic optimisation of branched fibre-reinforced composites based on the detailed analysis of biological concept generators. The methods include analyses of the functional morphology and biomechanics of arborescent monocotyledons and columnar cacti as well as measurements and modelling...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/11/5/055005

    authors: Masselter T,Hesse L,Böhm H,Gruhl A,Schwager H,Leupold J,Gude M,Milwich M,Neinhuis C,Speck T

    更新日期:2016-09-07 00:00:00

  • Flytrap-inspired robot using structurally integrated actuation based on bistability and a developable surface.

    abstract::The Venus flytrap uses bistability, the structural characteristic of its leaf, to actuate the leaf's rapid closing motion for catching its prey. This paper presents a flytrap-inspired robot and novel actuation mechanism that exploits the structural characteristics of this structure and a developable surface. We focus ...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/9/3/036004

    authors: Kim SW,Koh JS,Lee JG,Ryu J,Cho M,Cho KJ

    更新日期:2014-09-01 00:00:00

  • Determination of spatial fidelity required to accurately mimic the flight dynamics of a bat.

    abstract::Bats possess unique flight capabilities enabled by their wing morphology. While the articulated bone structure and flexible membrane constituting the wing are known to play a critical role in aerodynamic performance, the relationship has never been robustly quantified. Characterization of the sensitivity between preci...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab3e2a

    authors: Windes P,Tafti DK,Müller R

    更新日期:2019-09-24 00:00:00

  • Fluid-structure interaction modeling on a 3D ray-strengthened caudal fin.

    abstract::In this paper, we present a numerical model capable of solving the fluid-structure interaction problems involved in the dynamics of skeleton-reinforced fish fins. In this model, the fluid dynamics is simulated by solving the Navier-Stokes equations using a finite-volume method based on an overset, multi-block structur...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab0fbe

    authors: Shi G,Xiao Q,Zhu Q,Liao W

    更新日期:2019-04-10 00:00:00

  • Behavior modulation of rats to a robotic rat in multi-rat interaction.

    abstract::In this paper, we study the behavioral response of rats to a robotic rat during multi-rat interaction. Experiments are conducted in an open-field where a robotic rat called WR-5 is put together with three laboratory rats. WR-5 is following one rat (target), while avoiding the other two rats (outside observers) during ...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/10/5/056011

    authors: Shi Q,Ishii H,Tanaka K,Sugahara Y,Takanishi A,Okabayashi S,Huang Q,Fukuda T

    更新日期:2015-09-28 00:00:00