A starfish robot based on soft and smart modular structure (SMS) actuated by SMA wires.

Abstract:

:This paper describes the design, fabrication and locomotion of a starfish robot whose locomotion principle is derived from a starfish. The starfish robot has a number of tentacles or arms extending from its central body in the form of a disk, like the topology of a real starfish. The arm, which is a soft and composite structure (which we call the smart modular structure (SMS)) generating a planar reciprocal motion with a high speed of response upon the actuation provided by the shape memory alloy (SMA) wires, is fabricated from soft and smart materials. Based on the variation in the resistance of the SMA wires during their heating, an adaptive regulation (AR) heating strategy is proposed to (i) avoid overheating of the SMA wires, (ii) provide bending range control and (iii) achieve a high speed of response favorable to successfully propelling the starfish robot. Using a finite-segment method, a thermal dynamic model of the SMS is established to describe its thermal behavior under the AR and a constant heating strategy. A starfish robot with five SMS tentacles was tested with different control parameters to optimize its locomotion speed. As demonstrated in the accompanying video file, the robot successfully propelled in semi-submerged and underwater environments show its locomotion ability in the multi-media, like a real starfish. The propulsion speed of the starfish robot is at least an order of magnitude higher than that of those reported in the literature-thanks to the SMS controlled with the AR strategy.

journal_name

Bioinspir Biomim

authors

Jin H,Dong E,Alici G,Mao S,Min X,Liu C,Low KH,Yang J

doi

10.1088/1748-3190/11/5/056012

subject

Has Abstract

pub_date

2016-09-09 00:00:00

pages

056012

issue

5

eissn

1748-3182

issn

1748-3190

journal_volume

11

pub_type

杂志文章
  • Self-assembled hierarchically structured organic-inorganic composite systems.

    abstract::Designing bio-inspired, multifunctional organic-inorganic composite materials is one of the most popular current research objectives. Due to the high complexity of biocomposite structures found in nacre and bone, for example, a one-pot scalable and versatile synthesis approach addressing structural key features of bio...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章,评审

    doi:10.1088/1748-3190/11/3/035002

    authors: Tritschler U,Cölfen H

    更新日期:2016-05-13 00:00:00

  • A simple running model with rolling contact and its role as a template for dynamic locomotion on a hexapod robot.

    abstract::We report on the development of a robot's dynamic locomotion based on a template which fits the robot's natural dynamics. The developed template is a low degree-of-freedom planar model for running with rolling contact, which we call rolling spring loaded inverted pendulum (R-SLIP). Originating from a reduced-order mod...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/9/4/046004

    authors: Huang KJ,Huang CK,Lin PC

    更新日期:2014-10-07 00:00:00

  • Acoustic pathways revealed: simulated sound transmission and reception in Cuvier's beaked whale (Ziphius cavirostris).

    abstract::The finite element modeling (FEM) space reported here contains the head of a simulated whale based on CT data sets as well as physical measurements of sound-propagation characteristics of actual tissue samples. Simulated sound sources placed inside and outside of an adult male Cuvier's beaked whale (Ziphius cavirostri...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/3/1/016001

    authors: Cranford TW,Krysl P,Hildebrand JA

    更新日期:2008-03-01 00:00:00

  • Bio-inspired robotic dog paddling: kinematic and hydro-dynamic analysis.

    abstract::Research on quadrupedal robots inspired by canids or felids have been widely reported and demonstrated. However, none of these legged robots can deal with difficult environments that include water, such as small lakes, streams, rain, mud, flooded terrain, etc. In this paper, we present for the first time a kinematic a...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab3d05

    authors: Li Y,Fish F,Chen Y,Ren T,Zhou J

    更新日期:2019-09-13 00:00:00

  • Salmon jumping: behavior, kinematics and optimal conditions, with possible implications for fish passageway design.

    abstract::Behavioral and kinematic properties and capacities of wild migratory salmonid fishes swimming upstream and jumping up waterfalls generally have played only minor roles in the design and construction of passageways intended to help these fishes get past dams and other human-made obstacles blocking their movements. This...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/5/3/035006

    authors: Lauritzen DV,Hertel FS,Jordan LK,Gordon MS

    更新日期:2010-09-01 00:00:00

  • Analytical model and stability analysis of the leading edge spar of a passively morphing ornithopter wing.

    abstract::This paper presents the stability analysis of the leading edge spar of a flapping wing unmanned air vehicle with a compliant spine inserted in it. The compliant spine is a mechanism that was designed to be flexible during the upstroke and stiff during the downstroke. Inserting a variable stiffness mechanism into the l...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/10/6/065003

    authors: Wissa A,Calogero J,Wereley N,Hubbard JE Jr,Frecker M

    更新日期:2015-10-26 00:00:00

  • Aerodynamics and flow features of a damselfly in takeoff flight.

    abstract::Flight initiation is fundamental for survival, escape from predators and lifting payload from one place to another in biological fliers and can be broadly classified into jumping and non-jumping takeoffs. During jumping takeoffs, the legs generate most of the initial impulse. Whereas the wings generate most of the for...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa7f52

    authors: Bode-Oke AT,Zeyghami S,Dong H

    更新日期:2017-09-26 00:00:00

  • Biarticular elements as a contributor to energy efficiency: biomechanical review and application in bio-inspired robotics.

    abstract::Despite the increased interest in exoskeleton research in the last decades, not much progress has been made on the successful reduction of user effort. In humans, biarticular elements have been identified as one of the reasons for the energy economy of locomotion. This document gives an extensive literature overview c...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章,评审

    doi:10.1088/1748-3190/aa806e

    authors: Junius K,Moltedo M,Cherelle P,Rodriguez-Guerrero C,Vanderborght B,Lefeber D

    更新日期:2017-11-08 00:00:00

  • Design of a biomimetic robotic octopus arm.

    abstract::This paper reports the rationale and design of a robotic arm, as inspired by an octopus arm. The octopus arm shows peculiar features, such as the ability to bend in all directions, to produce fast elongations, and to vary its stiffness. The octopus achieves these unique motor skills, thanks to its peculiar muscular st...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/4/1/015006

    authors: Laschi C,Mazzolai B,Mattoli V,Cianchetti M,Dario P

    更新日期:2009-03-01 00:00:00

  • Bio-inspired composites with functionally graded platelets exhibit enhanced stiffness.

    abstract::Unidirectional composites inspired from biological materials such as nacre are composed of stiff platelets arranged in a staggered manner within a soft matrix. Elaborate analyses have been conducted on the aforementioned composites and they are found to have excellent mechanical properties like stiffness, strength and...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa9945

    authors: Tapse S,Anup S

    更新日期:2017-12-22 00:00:00

  • Fluid-structure interaction modeling on a 3D ray-strengthened caudal fin.

    abstract::In this paper, we present a numerical model capable of solving the fluid-structure interaction problems involved in the dynamics of skeleton-reinforced fish fins. In this model, the fluid dynamics is simulated by solving the Navier-Stokes equations using a finite-volume method based on an overset, multi-block structur...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab0fbe

    authors: Shi G,Xiao Q,Zhu Q,Liao W

    更新日期:2019-04-10 00:00:00

  • Musca domestica inspired machine vision sensor with hyperacuity.

    abstract::A fiber optic sensor inspired by the compound eye of the common housefly, Musca domestica, has been developed. The sensor coupled with analog preprocessing hardware has the potential to extract edge information quickly and in parallel. The design is motivated by the parallel nature of the fly's vision system and its d...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/3/2/026003

    authors: Riley DT,Harmann WM,Barrett SF,Wright CH

    更新日期:2008-06-01 00:00:00

  • A pressure difference sensor inspired by fish canal lateral line.

    abstract::It is of interest to exploit the insight from the lateral line system of fish for flow sensing applications. In this paper, a novel fish canal lateral line-inspired pressure difference sensor is proposed by embedding an ionic polymer-metal composite (IPMC) sensor within a canal filled with viscous fluid. Such a sensor...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab2fa8

    authors: Sharif MA,Tan X

    更新日期:2019-07-29 00:00:00

  • Design of the musculoskeletal leg [Formula: see text] based on the physiology of mono-articular and biarticular muscles in the human leg.

    abstract::In a lower extremity musculoskeletal leg, the actuation kinematics define the interaction of the actuators with each other and the environment. Design of such a kinematic chain is challenging due to the existence of the redundant biarticular actuators which simultaneously act on two joints, generating a parallel mecha...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab3896

    authors: Nejadfard A,Schütz S,Mianowski K,Vonwirth P,Berns K

    更新日期:2019-09-06 00:00:00

  • Solid-state nanopore based biomimetic voltage gated ion channels.

    abstract::Voltage gating is essential to the computational ability of neurons. We show this effect can be mimicked in a solid-state nanopore by functionalizing the pore interior with a redox active molecule. We study the integration of an active biological molecule-a quinone-into a solid state nanopore, and its subsequent induc...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa811b

    authors: Pevarnik M,Cui W,Yemenicioglu S,Rofeh J,Theogarajan L

    更新日期:2017-11-06 00:00:00

  • Biologically inspired coupled antenna beampattern design.

    abstract::We propose to design a small-size transmission-coupled antenna array, and corresponding radiation pattern, having high performance inspired by the female Ormia ochracea's coupled ears. For reproduction purposes, the female Ormia is able to locate male crickets' call accurately despite the small distance between its ea...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/5/4/046003

    authors: Akçakaya M,Nehorai A

    更新日期:2010-12-01 00:00:00

  • Effect of bladder wall thickness on miniature pneumatic artificial muscle performance.

    abstract::Pneumatic artificial muscles (PAMs) are actuators known for their high power to weight ratio, natural compliance and light weight. Due to these advantages, PAMs have been used for orthotic devices and robotic limbs. Small scale PAMs have the same advantages, as well as requiring greatly reduced volumes with potential ...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/10/5/055006

    authors: Pillsbury TE,Kothera CS,Wereley NM

    更新日期:2015-09-28 00:00:00

  • Walking with perturbations: a guide for biped humans and robots.

    abstract::This paper provides an update on the neural control of bipedal walking in relation to bioinspired models and robots. It is argued that most current models or robots are based on the construct of a symmetrical central pattern generator (CPG). However, new evidence suggests that CPG functioning is basically asymmetrical...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aada54

    authors: Duysens J,Forner-Cordero A

    更新日期:2018-09-04 00:00:00

  • Periodic spring-mass running over uneven terrain through feedforward control of landing conditions.

    abstract::This work pursues a feedforward control algorithm for high-speed legged locomotion over uneven terrain. Being able to rapidly negotiate uneven terrain without visual or a priori information about the terrain will allow legged systems to be used in time-critical applications and alongside fast-moving humans or vehicles...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/9/3/036018

    authors: Palmer LR 3rd,Eaton CE

    更新日期:2014-09-01 00:00:00

  • On burst-and-coast swimming performance in fish-like locomotion.

    abstract::Burst-and-coast swimming performance in fish-like locomotion is studied via two-dimensional numerical simulation. The numerical method used is the collocated finite-volume adaptive Cartesian cut-cell method developed previously. The NACA00xx airfoil shape is used as an equilibrium fish-body form. Swimming in a burst-a...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/4/3/036001

    authors: Chung MH

    更新日期:2009-09-01 00:00:00

  • Umbrella leaves-Biomechanics of transition zone from lamina to petiole of peltate leaves.

    abstract::In this study we aim to show how the peltate leaves of Colocasia fallax Schott and Tropaeolum majus L., despite their compact design, achieve a rigid connection between petiole and lamina. We have combined various microscopy techniques and computed tomography (CT) scanning for the analysis of the basic structure of th...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab2411

    authors: Sacher M,Lautenschläger T,Kempe A,Neinhuis C

    更新日期:2019-06-20 00:00:00

  • Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates.

    abstract::Nano-structured colorful zinc oxide (ZnO) replicas were produced using the wings of the Ideopsis similis butterfly as templates. The ZnO replicas we obtained exhibit iridescence, which was clearly observed under an optical microscope (OM). Field emission scanning electron microscope analysis shows that all the microst...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/1/3/003

    authors: Zhang W,Zhang D,Fan T,Ding J,Gu J,Guo Q,Ogawa H

    更新日期:2006-09-01 00:00:00

  • Self-assembly of montmorillonite platelets during drying.

    abstract::This work is prompted by the quest for nanocomposites in which ordered, layered reinforcement preforms similar in structure to the arrangements seen in nacre are achieved without complex automated layer-by-layer assembly. Lamellar structures were obtained in montmorillonite films simply by slow drying without the use ...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/7/4/046004

    authors: Walley P,Zhang Y,Evans JR

    更新日期:2012-12-01 00:00:00

  • Active vision: on the relevance of a bio-inspired approach for object detection.

    abstract::Starting from biological systems, we review the interest of active perception for object recognition in an autonomous system. Foveated vision and control of the eye saccade introduce strong benefits related to the differentiation of a 'what' pathway recognizing some local parts in the image and a 'where' pathway relat...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章,评审

    doi:10.1088/1748-3190/ab504c

    authors: Hoang K,Pitti A,Goudou JF,Dufour JY,Gaussier P

    更新日期:2020-02-14 00:00:00

  • Flytrap-inspired robot using structurally integrated actuation based on bistability and a developable surface.

    abstract::The Venus flytrap uses bistability, the structural characteristic of its leaf, to actuate the leaf's rapid closing motion for catching its prey. This paper presents a flytrap-inspired robot and novel actuation mechanism that exploits the structural characteristics of this structure and a developable surface. We focus ...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/9/3/036004

    authors: Kim SW,Koh JS,Lee JG,Ryu J,Cho M,Cho KJ

    更新日期:2014-09-01 00:00:00

  • The bioinspiring potential of weakly electric fish.

    abstract::Electric fish are privileged animals for bio-inspiring man-built autonomous systems since they have a multimodal sense that allows underwater navigation, object classification and intraspecific communication. Although there are taxon dependent variations adapted to different environments, this multimodal system can be...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章,评审

    doi:10.1088/1748-3190/12/2/025004

    authors: Caputi AA

    更新日期:2017-02-02 00:00:00

  • Dynamic traversal of large gaps by insects and legged robots reveals a template.

    abstract::It is well known that animals can use neural and sensory feedback via vision, tactile sensing, and echolocation to negotiate obstacles. Similarly, most robots use deliberate or reactive planning to avoid obstacles, which relies on prior knowledge or high-fidelity sensing of the environment. However, during dynamic loc...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aaa2cd

    authors: Gart SW,Yan C,Othayoth R,Ren Z,Li C

    更新日期:2018-02-02 00:00:00

  • Design and analysis of coiled fiber reinforced soft pneumatic actuator.

    abstract::Fiber reinforced elastomeric enclosures (FREEs) are soft pneumatic actuators that can contract and generate forces upon pressurization. Typical engineering applications utilize FREEs in their straight cylindrical configuration and derive actuation displacement and forces from their ends. However, there are several ins...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aab19c

    authors: Singh G,Xiao C,Hsiao-Wecksler ET,Krishnan G

    更新日期:2018-04-18 00:00:00

  • A novel distributed swarm control strategy based on coupled signal oscillators.

    abstract::The miniaturization of microrobots is accompanied by limitations of signaling, sensing and agility. Control of a swarm of simple microrobots has to cope with such constraints in a way which still guarantees the accomplishment of a task. A recently proposed communication method, which is based on the coupling of signal...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/2/3/002

    authors: Hartbauer M,Römer H

    更新日期:2007-09-01 00:00:00

  • Extracting motor synergies from random movements for low-dimensional task-space control of musculoskeletal robots.

    abstract::In the field of human motor control, the motor synergy hypothesis explains how humans simplify body control dimensionality by coordinating groups of muscles, called motor synergies, instead of controlling muscles independently. In most applications of motor synergies to low-dimensional control in robotics, motor syner...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/10/5/056016

    authors: Fu KC,Dalla Libera F,Ishiguro H

    更新日期:2015-10-08 00:00:00