Biarticular elements as a contributor to energy efficiency: biomechanical review and application in bio-inspired robotics.

Abstract:

:Despite the increased interest in exoskeleton research in the last decades, not much progress has been made on the successful reduction of user effort. In humans, biarticular elements have been identified as one of the reasons for the energy economy of locomotion. This document gives an extensive literature overview concerning the function of biarticular muscles in human beings. The exact role of these muscles in the efficiency of human locomotion is reduced to three elementary functions: energy transfer towards distal joints, efficient control of output force direction and double joint actuation. This information is used to give an insight in the application of biarticular elements in bio-inspired robotics, i.e. bipedal robots, exoskeletons, robotic manipulators and prostheses. Additionally, an attempt is made to find an answer on the question whether the biarticular property leads to a unique contribution to energy efficiency of locomotion, unachievable by mono-articular alternatives. This knowledge is then further utilised to indicate how biarticular actuation of exoskeletons can contribute to an increased performance in reducing user effort.

journal_name

Bioinspir Biomim

authors

Junius K,Moltedo M,Cherelle P,Rodriguez-Guerrero C,Vanderborght B,Lefeber D

doi

10.1088/1748-3190/aa806e

subject

Has Abstract

pub_date

2017-11-08 00:00:00

pages

061001

issue

6

eissn

1748-3182

issn

1748-3190

journal_volume

12

pub_type

杂志文章,评审
  • The function of the alula on engineered wings: a detailed experimental investigation of a bioinspired leading-edge device.

    abstract::Birds fly in dynamic flight conditions while maintaining aerodynamic efficiency. This agility is in part due to specialized feather systems that function as flow control devices during adverse conditions such as high-angle of attack maneuvers. In this paper, we present an engineered three-dimensional leading-edge devi...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab36ad

    authors: Ito MR,Duan C,Wissa AA

    更新日期:2019-08-29 00:00:00

  • Recent advances in superhydrophobic surfaces and their relevance to biology and medicine.

    abstract::By mimicking naturally occurring superhydrophobic surfaces, scientists can now realize artificial surfaces on which droplets of a few microliters of water are forced to assume an almost spherical shape and an extremely high contact angle. In recent decades, these surfaces have attracted much attention due to their tec...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章,评审

    doi:10.1088/1748-3190/11/1/011001

    authors: Ciasca G,Papi M,Businaro L,Campi G,Ortolani M,Palmieri V,Cedola A,De Ninno A,Gerardino A,Maulucci G,De Spirito M

    更新日期:2016-02-04 00:00:00

  • Randomness in appendage coordination facilitates strenuous ground self-righting.

    abstract::Randomness is common in biological and artificial systems, resulting either from stochasticity of the environment or noise in organisms or devices themselves. In locomotor control, randomness is typically considered a nuisance. For example, during dynamic walking, randomness in stochastic terrain leads to metastable d...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/abac47

    authors: Xuan Q,Li C

    更新日期:2020-08-04 00:00:00

  • Separation control over a grooved surface inspired by dolphin skin.

    abstract::Over many decades the biological surfaces of aquatic swimmers have been studied for their potential as drag reducing surfaces. The hydrodynamic benefit of riblets, or grooves embedded parallel to the flow which appear on surfaces such as shark skin, have been well documented. However the skin of dolphins is embedded w...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa5770

    authors: Lang AW,Jones EM,Afroz F

    更新日期:2017-02-10 00:00:00

  • Acoustic pathways revealed: simulated sound transmission and reception in Cuvier's beaked whale (Ziphius cavirostris).

    abstract::The finite element modeling (FEM) space reported here contains the head of a simulated whale based on CT data sets as well as physical measurements of sound-propagation characteristics of actual tissue samples. Simulated sound sources placed inside and outside of an adult male Cuvier's beaked whale (Ziphius cavirostri...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/3/1/016001

    authors: Cranford TW,Krysl P,Hildebrand JA

    更新日期:2008-03-01 00:00:00

  • Musca domestica inspired machine vision sensor with hyperacuity.

    abstract::A fiber optic sensor inspired by the compound eye of the common housefly, Musca domestica, has been developed. The sensor coupled with analog preprocessing hardware has the potential to extract edge information quickly and in parallel. The design is motivated by the parallel nature of the fly's vision system and its d...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/3/2/026003

    authors: Riley DT,Harmann WM,Barrett SF,Wright CH

    更新日期:2008-06-01 00:00:00

  • Artificial Manduca sexta forewings for flapping-wing micro aerial vehicles: how wing structure affects performance.

    abstract::A novel approach to fabricating and testing artificial insect wings has been developed. Utilizing these new techniques, locally harvested hawk moth (Manduca sexta) forewings are compared to engineered forewings with varying wing structures. A number of small, flexible engineered forewings were fabricated with identica...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa7ea3

    authors: Moses KC,Michaels SC,Willis M,Quinn RD

    更新日期:2017-09-26 00:00:00

  • From falling to flying: the path to powered flight of a robotic samara nano air vehicle.

    abstract::This paper details the development of a nano-scale (>15 cm) robotic samara, or winged seed. The design of prototypes inspired by naturally occurring geometries is presented along with a detailed experimental process which elucidates similarities between mechanical and robotic samara flight dynamics. The helical trajec...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/5/4/045009

    authors: Ulrich ER,Pines DJ,Humbert JS

    更新日期:2010-12-01 00:00:00

  • Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV.

    abstract::Birds demonstrate that flapping-wing flight (FWF) is a versatile flight mode, compatible with hovering, forward flight and gliding to save energy. This extended flight domain would be especially useful on mini-UAVs. However, design is challenging because aerodynamic efficiency is conditioned by complex movements of th...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/2/4/002

    authors: de Margerie E,Mouret JB,Doncieux S,Meyer JA

    更新日期:2007-12-01 00:00:00

  • Running up a wall: the role and challenges of dynamic climbing in enhancing multi-modal legged systems.

    abstract::Animals have demonstrated the ability to move through, across and over some of the most daunting environments on earth. This versatility and adaptability stems from their capacity to alter their locomotion dynamics and employ disparate locomotion modalities to suit the terrain at hand. As with modalities such as runni...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/10/2/025005

    authors: Miller BD,Rivera PR,Dickson JD,Clark JE

    更新日期:2015-03-26 00:00:00

  • Fluid-structure interaction modeling on a 3D ray-strengthened caudal fin.

    abstract::In this paper, we present a numerical model capable of solving the fluid-structure interaction problems involved in the dynamics of skeleton-reinforced fish fins. In this model, the fluid dynamics is simulated by solving the Navier-Stokes equations using a finite-volume method based on an overset, multi-block structur...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab0fbe

    authors: Shi G,Xiao Q,Zhu Q,Liao W

    更新日期:2019-04-10 00:00:00

  • Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles.

    abstract::Recent developments in the design and propulsion of biomimetic autonomous underwater vehicles (AUVs) have focused on boxfish as models (e.g. Deng and Avadhanula 2005 Biomimetic micro underwater vehicle with oscillating fin propulsion: system design and force measurement Proc. 2005 IEEE Int. Conf. Robot. Auto. (Barcelo...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/3/3/034002

    authors: Blake RW,Ng H,Chan KH,Li J

    更新日期:2008-09-01 00:00:00

  • Biomimetic optimisation of branched fibre-reinforced composites in engineering by detailed analyses of biological concept generators.

    abstract::The aim of this study is the biomimetic optimisation of branched fibre-reinforced composites based on the detailed analysis of biological concept generators. The methods include analyses of the functional morphology and biomechanics of arborescent monocotyledons and columnar cacti as well as measurements and modelling...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/11/5/055005

    authors: Masselter T,Hesse L,Böhm H,Gruhl A,Schwager H,Leupold J,Gude M,Milwich M,Neinhuis C,Speck T

    更新日期:2016-09-07 00:00:00

  • Biomimetic design processes in architecture: morphogenetic and evolutionary computational design.

    abstract::Design computation has profound impact on architectural design methods. This paper explains how computational design enables the development of biomimetic design processes specific to architecture, and how they need to be significantly different from established biomimetic processes in engineering disciplines. The pap...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/7/1/015003

    authors: Menges A

    更新日期:2012-03-01 00:00:00

  • On burst-and-coast swimming performance in fish-like locomotion.

    abstract::Burst-and-coast swimming performance in fish-like locomotion is studied via two-dimensional numerical simulation. The numerical method used is the collocated finite-volume adaptive Cartesian cut-cell method developed previously. The NACA00xx airfoil shape is used as an equilibrium fish-body form. Swimming in a burst-a...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/4/3/036001

    authors: Chung MH

    更新日期:2009-09-01 00:00:00

  • Dynamic traversal of large gaps by insects and legged robots reveals a template.

    abstract::It is well known that animals can use neural and sensory feedback via vision, tactile sensing, and echolocation to negotiate obstacles. Similarly, most robots use deliberate or reactive planning to avoid obstacles, which relies on prior knowledge or high-fidelity sensing of the environment. However, during dynamic loc...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aaa2cd

    authors: Gart SW,Yan C,Othayoth R,Ren Z,Li C

    更新日期:2018-02-02 00:00:00

  • Controlling legs for locomotion-insights from robotics and neurobiology.

    abstract::Walking is the most common terrestrial form of locomotion in animals. Its great versatility and flexibility has led to many attempts at building walking machines with similar capabilities. The control of walking is an active research area both in neurobiology and robotics, with a large and growing body of work. This p...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章,评审

    doi:10.1088/1748-3190/10/4/041001

    authors: Buschmann T,Ewald A,von Twickel A,Büschges A

    更新日期:2015-06-29 00:00:00

  • A simple running model with rolling contact and its role as a template for dynamic locomotion on a hexapod robot.

    abstract::We report on the development of a robot's dynamic locomotion based on a template which fits the robot's natural dynamics. The developed template is a low degree-of-freedom planar model for running with rolling contact, which we call rolling spring loaded inverted pendulum (R-SLIP). Originating from a reduced-order mod...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/9/4/046004

    authors: Huang KJ,Huang CK,Lin PC

    更新日期:2014-10-07 00:00:00

  • Nacre-mimetic bulk lamellar composites reinforced with high aspect ratio glass flakes.

    abstract::Nacre-mimetic epoxy matrix composites reinforced with readily available micron-sized high aspect ratio C-glass flakes were fabricated by a relatively simple, single-step, scalable, time, cost and man-power effective processing strategy: hot-press assisted slip casting (HASC). HASC enables the fabrication of preferenti...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/12/1/016002

    authors: Guner SN,Dericioglu AF

    更新日期:2016-12-05 00:00:00

  • A fast, precise and low-cost replication technique for nano- and high-aspect-ratio structures of biological and artificial surfaces.

    abstract::Biological surfaces are multifunctional interfaces between the organisms and their environment. Properties such as the wettability and adhesion of particles are linked to the micro- and nanostructures of their surfaces. In this study, we used plant and artificial surfaces covered with wax crystals to develop a low-cos...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/3/4/046002

    authors: Koch K,Schulte AJ,Fischer A,Gorb SN,Barthlott W

    更新日期:2008-12-01 00:00:00

  • A pressure difference sensor inspired by fish canal lateral line.

    abstract::It is of interest to exploit the insight from the lateral line system of fish for flow sensing applications. In this paper, a novel fish canal lateral line-inspired pressure difference sensor is proposed by embedding an ionic polymer-metal composite (IPMC) sensor within a canal filled with viscous fluid. Such a sensor...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab2fa8

    authors: Sharif MA,Tan X

    更新日期:2019-07-29 00:00:00

  • Walking with perturbations: a guide for biped humans and robots.

    abstract::This paper provides an update on the neural control of bipedal walking in relation to bioinspired models and robots. It is argued that most current models or robots are based on the construct of a symmetrical central pattern generator (CPG). However, new evidence suggests that CPG functioning is basically asymmetrical...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aada54

    authors: Duysens J,Forner-Cordero A

    更新日期:2018-09-04 00:00:00

  • Aerodynamics and flow features of a damselfly in takeoff flight.

    abstract::Flight initiation is fundamental for survival, escape from predators and lifting payload from one place to another in biological fliers and can be broadly classified into jumping and non-jumping takeoffs. During jumping takeoffs, the legs generate most of the initial impulse. Whereas the wings generate most of the for...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa7f52

    authors: Bode-Oke AT,Zeyghami S,Dong H

    更新日期:2017-09-26 00:00:00

  • The application of conducting polymers to a biorobotic fin propulsor.

    abstract::Conducting polymer actuators based on polypyrrole are being developed for use in biorobotic fins that are designed to create and control forces like the pectoral fin of the bluegill sunfish (Lepomis macrochirus). It is envisioned that trilayer bending actuators will be used within, and as, the fin's webbing to create ...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章,评审

    doi:10.1088/1748-3182/2/2/S02

    authors: Tangorra J,Anquetil P,Fofonoff T,Chen A,Del Zio M,Hunter I

    更新日期:2007-06-01 00:00:00

  • Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates.

    abstract::Nano-structured colorful zinc oxide (ZnO) replicas were produced using the wings of the Ideopsis similis butterfly as templates. The ZnO replicas we obtained exhibit iridescence, which was clearly observed under an optical microscope (OM). Field emission scanning electron microscope analysis shows that all the microst...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/1/3/003

    authors: Zhang W,Zhang D,Fan T,Ding J,Gu J,Guo Q,Ogawa H

    更新日期:2006-09-01 00:00:00

  • Solid-state nanopore based biomimetic voltage gated ion channels.

    abstract::Voltage gating is essential to the computational ability of neurons. We show this effect can be mimicked in a solid-state nanopore by functionalizing the pore interior with a redox active molecule. We study the integration of an active biological molecule-a quinone-into a solid state nanopore, and its subsequent induc...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa811b

    authors: Pevarnik M,Cui W,Yemenicioglu S,Rofeh J,Theogarajan L

    更新日期:2017-11-06 00:00:00

  • Learning from evolutionary optimisation: what are toughening mechanisms good for in dentine, a nonrepairing bone tissue?

    abstract::The main mass of material found in teeth is dentine, a bone-like tissue, riddled with micron-sized tubules and devoid of living cells. It provides support to the outer wear-resistant layer of enamel, and exhibits toughening mechanisms which contribute to crack resistance. And yet unlike most bone tissues, dentine does...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/11/5/051003

    authors: Zaslansky P,Currey JD,Fleck C

    更新日期:2016-09-12 00:00:00

  • A novel mechanism for emulating insect wing kinematics.

    abstract::A novel dual-differential four-bar flapping mechanism that can accurately emulate insect wing kinematics in all three degrees of freedom (translation, rotation and stroke plane deviation) is developed. The mechanism is specifically designed to be simple and scalable such that it can be utilized on an insect-based flap...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/7/3/036017

    authors: Seshadri P,Benedict M,Chopra I

    更新日期:2012-09-01 00:00:00

  • Artificial insect wings with biomimetic wing morphology and mechanical properties.

    abstract::The pursuit of a high lift force for insect-scale flapping-wing micro aerial vehicles (FMAVs) requires that their artificial wings possess biomimetic wing features which are close to those of their natural counterpart. In this work, we present both fabrication and testing methods for artificial insect wings with biomi...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa7f16

    authors: Liu Z,Yan X,Qi M,Zhu Y,Huang D,Zhang X,Lin L

    更新日期:2017-09-26 00:00:00

  • Flow structure modifications by leading-edge tubercles on a 3D wing.

    abstract::Leading-edge tubercles on a humpback whale flipper are known to enhance its hydrodynamic performance at post-stall angles of attack (Miklosovic et al 2004 Phys. Fluids 16 39-42). We investigate vortical structures above a three-dimensional wing with tubercles using surface-oil-flow visualization and particle image vel...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aae6fc

    authors: Kim H,Kim J,Choi H

    更新日期:2018-10-26 00:00:00