Learning from evolutionary optimisation: what are toughening mechanisms good for in dentine, a nonrepairing bone tissue?

Abstract:

:The main mass of material found in teeth is dentine, a bone-like tissue, riddled with micron-sized tubules and devoid of living cells. It provides support to the outer wear-resistant layer of enamel, and exhibits toughening mechanisms which contribute to crack resistance. And yet unlike most bone tissues, dentine does not remodel and consequently any accumulated damage does not 'self repair'. Because damage containment followed by tissue replacement is a prime reason for the crack-arresting microstructures found in most bones, the occurrence of toughening mechanisms without the biological capability to repair is puzzling. Here we consider the notion that dentine might be overdesigned for strength, because it has to compensate for the lack of cell-mediated healing mechanisms. Based on our own and on literature-reported observations, including quasistatic and fatigue properties, dentine design principles are discussed in light of the functional conditions under which teeth evolved. We conclude that dentine is only slightly overdesigned for everyday cyclic loading because usual mastication stresses may come close to its endurance strength. The in-built toughening mechanisms constitute an evolutionary benefit because they prevent catastrophic failure during rare overload events, which was probably very advantageous in our hunter gatherer ancestor times. From a bio-inspired perspective, understanding the extent of evolutionary overdesign might be useful for optimising biomimetic structures used for load bearing.

journal_name

Bioinspir Biomim

authors

Zaslansky P,Currey JD,Fleck C

doi

10.1088/1748-3190/11/5/051003

subject

Has Abstract

pub_date

2016-09-12 00:00:00

pages

051003

issue

5

eissn

1748-3182

issn

1748-3190

journal_volume

11

pub_type

杂志文章
  • Bio-inspired robotic dog paddling: kinematic and hydro-dynamic analysis.

    abstract::Research on quadrupedal robots inspired by canids or felids have been widely reported and demonstrated. However, none of these legged robots can deal with difficult environments that include water, such as small lakes, streams, rain, mud, flooded terrain, etc. In this paper, we present for the first time a kinematic a...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab3d05

    authors: Li Y,Fish F,Chen Y,Ren T,Zhou J

    更新日期:2019-09-13 00:00:00

  • Effect of bladder wall thickness on miniature pneumatic artificial muscle performance.

    abstract::Pneumatic artificial muscles (PAMs) are actuators known for their high power to weight ratio, natural compliance and light weight. Due to these advantages, PAMs have been used for orthotic devices and robotic limbs. Small scale PAMs have the same advantages, as well as requiring greatly reduced volumes with potential ...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/10/5/055006

    authors: Pillsbury TE,Kothera CS,Wereley NM

    更新日期:2015-09-28 00:00:00

  • The function of the alula on engineered wings: a detailed experimental investigation of a bioinspired leading-edge device.

    abstract::Birds fly in dynamic flight conditions while maintaining aerodynamic efficiency. This agility is in part due to specialized feather systems that function as flow control devices during adverse conditions such as high-angle of attack maneuvers. In this paper, we present an engineered three-dimensional leading-edge devi...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab36ad

    authors: Ito MR,Duan C,Wissa AA

    更新日期:2019-08-29 00:00:00

  • Effective locomotion at multiple stride frequencies using proprioceptive feedback on a legged microrobot.

    abstract::Limitations in actuation, sensing, and computation have forced small legged robots to rely on carefully tuned, mechanically mediated leg trajectories for effective locomotion. Recent advances in manufacturing, however, have enabled in such robots the ability for operation at multiple stride frequencies using multi-deg...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab295b

    authors: Doshi N,Jayaram K,Castellanos S,Kuindersma S,Wood RJ

    更新日期:2019-07-01 00:00:00

  • A bio-inspired study on tidal energy extraction with flexible flapping wings.

    abstract::Previous research on the flexible structure of flapping wings has shown an improved propulsion performance in comparison to rigid wings. However, not much is known about this function in terms of power efficiency modification for flapping wing energy devices. In order to study the role of the flexible wing deformation...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/8/3/036011

    authors: Liu W,Xiao Q,Cheng F

    更新日期:2013-09-01 00:00:00

  • Reactive conducting polymers as actuating sensors and tactile muscles.

    abstract::Films of conducting polymers when used as electrodes in an electrolytic solution oxidize and reduce under the flow of anodic and cathodic currents, respectively. The electrochemical reactions induce conformational movements of the chains, generation or destruction of free volume and interchange of ions and solvent wit...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/3/3/035004

    authors: Otero TF

    更新日期:2008-09-01 00:00:00

  • Effect of clap-and-fling mechanism on force generation in flapping wing micro aerial vehicles.

    abstract::The clap-and-fling effect, first observed in a number of insects, serves as a lift-enhancing mechanism for bio-inspired flapping wing micro aerial vehicles (MAV). In our comprehensive literature survey, we observe that the effect manifests differently in insects and contemporary MAVs; insects have active control over ...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab0477

    authors: Jadhav SS,Lua KB,Tay WB

    更新日期:2019-02-27 00:00:00

  • A bio-inspired apposition compound eye machine vision sensor system.

    abstract::The Wyoming Information, Signal Processing, and Robotics Laboratory is developing a wide variety of bio-inspired vision sensors. We are interested in exploring the vision system of various insects and adapting some of their features toward the development of specialized vision sensors. We do not attempt to supplant tr...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/4/4/046002

    authors: Davis JD,Barrett SF,Wright CH,Wilcox M

    更新日期:2009-12-01 00:00:00

  • Active vision: on the relevance of a bio-inspired approach for object detection.

    abstract::Starting from biological systems, we review the interest of active perception for object recognition in an autonomous system. Foveated vision and control of the eye saccade introduce strong benefits related to the differentiation of a 'what' pathway recognizing some local parts in the image and a 'where' pathway relat...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章,评审

    doi:10.1088/1748-3190/ab504c

    authors: Hoang K,Pitti A,Goudou JF,Dufour JY,Gaussier P

    更新日期:2020-02-14 00:00:00

  • Periodic spring-mass running over uneven terrain through feedforward control of landing conditions.

    abstract::This work pursues a feedforward control algorithm for high-speed legged locomotion over uneven terrain. Being able to rapidly negotiate uneven terrain without visual or a priori information about the terrain will allow legged systems to be used in time-critical applications and alongside fast-moving humans or vehicles...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/9/3/036018

    authors: Palmer LR 3rd,Eaton CE

    更新日期:2014-09-01 00:00:00

  • Mesocarp of Brazil nut (Bertholletia excelsa) as inspiration for new impact resistant materials.

    abstract::Aiming to produce bioinspired impact and puncture resistant materials, the mesocarp of the Brazil nut (Bertholletia excelsa) was characterized. The mesocarp composition was investigated by chemical extraction and its microstructure was analyzed by optical microscopy and microtomography (microCT). A compression test ev...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab2298

    authors: Sonego M,Fleck C,Pessan LA

    更新日期:2019-07-03 00:00:00

  • Genetic engineered color silk: fabrication of a photonics material through a bioassisted technology.

    abstract::Silk produced by the silkworm Bombyx mori is an attractive material because of its luster, smooth and soft texture, conspicuous mechanical strength, good biocompatibility, slow biodegradation, and carbon neutral synthesis. Silkworms have been domesticated and bred for production of better quality and quantity of silk,...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章,评审

    doi:10.1088/1748-3190/aabbe9

    authors: Shimizu K

    更新日期:2018-05-15 00:00:00

  • Bio-inspired composites with functionally graded platelets exhibit enhanced stiffness.

    abstract::Unidirectional composites inspired from biological materials such as nacre are composed of stiff platelets arranged in a staggered manner within a soft matrix. Elaborate analyses have been conducted on the aforementioned composites and they are found to have excellent mechanical properties like stiffness, strength and...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa9945

    authors: Tapse S,Anup S

    更新日期:2017-12-22 00:00:00

  • Burst-and-coast swimming is not always energetically beneficial in fish (Hemigrammus bleheri).

    abstract::Burst-and-coast swimming is an intermittent mode of locomotion used by various fish species. The intermittent gait has been associated with certain advantages such as stabilizing the visual field, improved sensing ability, and reduced energy expenditure. We investigate burst-coast swimming in rummy nose tetra fish (He...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/abb521

    authors: Ashraf I,Van Wassenbergh S,Verma S

    更新日期:2020-11-07 00:00:00

  • Bending continuous structures with SMAs: a novel robotic fish design.

    abstract::In this paper, we describe our research on bio-inspired locomotion systems using deformable structures and smart materials, concretely shape memory alloys (SMAs). These types of materials allow us to explore the possibility of building motor-less and gear-less robots. A swimming underwater fish-like robot has been dev...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/6/4/045005

    authors: Rossi C,Colorado J,Coral W,Barrientos A

    更新日期:2011-12-01 00:00:00

  • Clarity of objectives and working principles enhances the success of biomimetic programs.

    abstract::Biomimetics, the transfer of functional principles from living systems into product designs, is increasingly being utilized by engineers. Nevertheless, recurring problems must be overcome if it is to avoid becoming a short-lived fad. Here we assess the efficiency and suitability of methods typically employed by examin...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa86ff

    authors: Wolff JO,Wells D,Reid CR,Blamires SJ

    更新日期:2017-09-26 00:00:00

  • A fast, precise and low-cost replication technique for nano- and high-aspect-ratio structures of biological and artificial surfaces.

    abstract::Biological surfaces are multifunctional interfaces between the organisms and their environment. Properties such as the wettability and adhesion of particles are linked to the micro- and nanostructures of their surfaces. In this study, we used plant and artificial surfaces covered with wax crystals to develop a low-cos...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/3/4/046002

    authors: Koch K,Schulte AJ,Fischer A,Gorb SN,Barthlott W

    更新日期:2008-12-01 00:00:00

  • Analytical model and stability analysis of the leading edge spar of a passively morphing ornithopter wing.

    abstract::This paper presents the stability analysis of the leading edge spar of a flapping wing unmanned air vehicle with a compliant spine inserted in it. The compliant spine is a mechanism that was designed to be flexible during the upstroke and stiff during the downstroke. Inserting a variable stiffness mechanism into the l...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/10/6/065003

    authors: Wissa A,Calogero J,Wereley N,Hubbard JE Jr,Frecker M

    更新日期:2015-10-26 00:00:00

  • On the biological mechanics and energetics of the hip joint muscle-tendon system assisted by passive hip exoskeleton.

    abstract::Passive exoskeletons have potential advantages in reducing metabolic energy cost. We consider a passive elastic exoskeleton (peEXO) providing hip flexion moment to assist hip flexors during walking, our goal is to use a biomechanical model to explore the biological mechanics and energetics of the hip joint muscle-tend...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aaeefd

    authors: Chen W,Wu S,Zhou T,Xiong C

    更新日期:2018-12-04 00:00:00

  • From falling to flying: the path to powered flight of a robotic samara nano air vehicle.

    abstract::This paper details the development of a nano-scale (>15 cm) robotic samara, or winged seed. The design of prototypes inspired by naturally occurring geometries is presented along with a detailed experimental process which elucidates similarities between mechanical and robotic samara flight dynamics. The helical trajec...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/5/4/045009

    authors: Ulrich ER,Pines DJ,Humbert JS

    更新日期:2010-12-01 00:00:00

  • Systematic comparison of model polymer nanocomposite mechanics.

    abstract::Polymer nanocomposites render a range of outstanding materials from natural products such as silk, sea shells and bones, to synthesized nanoclay or carbon nanotube reinforced polymer systems. In contrast to the fast expanding interest in this type of material, the fundamental mechanisms of their mixing, phase behavior...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/11/5/055008

    authors: Xiao S,Peter C,Kremer K

    更新日期:2016-09-13 00:00:00

  • Fluid-structure interaction modeling on a 3D ray-strengthened caudal fin.

    abstract::In this paper, we present a numerical model capable of solving the fluid-structure interaction problems involved in the dynamics of skeleton-reinforced fish fins. In this model, the fluid dynamics is simulated by solving the Navier-Stokes equations using a finite-volume method based on an overset, multi-block structur...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab0fbe

    authors: Shi G,Xiao Q,Zhu Q,Liao W

    更新日期:2019-04-10 00:00:00

  • Nacre-mimetic bulk lamellar composites reinforced with high aspect ratio glass flakes.

    abstract::Nacre-mimetic epoxy matrix composites reinforced with readily available micron-sized high aspect ratio C-glass flakes were fabricated by a relatively simple, single-step, scalable, time, cost and man-power effective processing strategy: hot-press assisted slip casting (HASC). HASC enables the fabrication of preferenti...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/12/1/016002

    authors: Guner SN,Dericioglu AF

    更新日期:2016-12-05 00:00:00

  • Behavior modulation of rats to a robotic rat in multi-rat interaction.

    abstract::In this paper, we study the behavioral response of rats to a robotic rat during multi-rat interaction. Experiments are conducted in an open-field where a robotic rat called WR-5 is put together with three laboratory rats. WR-5 is following one rat (target), while avoiding the other two rats (outside observers) during ...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/10/5/056011

    authors: Shi Q,Ishii H,Tanaka K,Sugahara Y,Takanishi A,Okabayashi S,Huang Q,Fukuda T

    更新日期:2015-09-28 00:00:00

  • Configuration optimization of bionic piezoelectric hair sensor for acoustic/tactile detection.

    abstract::Specialized sensory hairs are important biological sensors for arthropods to detect and recognize environmental conditions including acoustic, pressure and airflow signals. However, the present design methodology of such biomimic micro devices are mainly depending on shape mimicking, which greatly restricts their perf...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab8f6c

    authors: Wang Y,Zhao J,Xia Y,Liu P

    更新日期:2020-08-12 00:00:00

  • Musca domestica inspired machine vision sensor with hyperacuity.

    abstract::A fiber optic sensor inspired by the compound eye of the common housefly, Musca domestica, has been developed. The sensor coupled with analog preprocessing hardware has the potential to extract edge information quickly and in parallel. The design is motivated by the parallel nature of the fly's vision system and its d...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/3/2/026003

    authors: Riley DT,Harmann WM,Barrett SF,Wright CH

    更新日期:2008-06-01 00:00:00

  • Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV.

    abstract::Birds demonstrate that flapping-wing flight (FWF) is a versatile flight mode, compatible with hovering, forward flight and gliding to save energy. This extended flight domain would be especially useful on mini-UAVs. However, design is challenging because aerodynamic efficiency is conditioned by complex movements of th...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/2/4/002

    authors: de Margerie E,Mouret JB,Doncieux S,Meyer JA

    更新日期:2007-12-01 00:00:00

  • Wing rapid responses and aerodynamics of fruit flies during headwind gust perturbations.

    abstract::Insects are the main source of inspiration for flapping-wing micro air vehicles (FWMAVs). They frequently encounter wind gust perturbations in natural environments, and effectively cope with these perturbations. Here, we investigated the rapid gust response of flies to instruct the gust stability design of FWMAVs. A n...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab97fc

    authors: Gu M,Wu J,Zhang Y

    更新日期:2020-07-07 00:00:00

  • Large-amplitude undulatory swimming near a wall.

    abstract::The propulsive dynamics of a flexible undulating foil in a self-propelled swimming configuration near a wall is studied experimentally. Measurements of the swimming speed and the propulsive force are presented, together with image acquisition of the kinematics of the foil and particle image velocimetry (PIV) in its wa...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/10/1/016003

    authors: Fernández-Prats R,Raspa V,Thiria B,Huera-Huarte F,Godoy-Diana R

    更新日期:2015-01-05 00:00:00

  • Randomness in appendage coordination facilitates strenuous ground self-righting.

    abstract::Randomness is common in biological and artificial systems, resulting either from stochasticity of the environment or noise in organisms or devices themselves. In locomotor control, randomness is typically considered a nuisance. For example, during dynamic walking, randomness in stochastic terrain leads to metastable d...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/abac47

    authors: Xuan Q,Li C

    更新日期:2020-08-04 00:00:00