A bio-inspired apposition compound eye machine vision sensor system.

Abstract:

:The Wyoming Information, Signal Processing, and Robotics Laboratory is developing a wide variety of bio-inspired vision sensors. We are interested in exploring the vision system of various insects and adapting some of their features toward the development of specialized vision sensors. We do not attempt to supplant traditional digital imaging techniques but rather develop sensor systems tailor made for the application at hand. We envision that many applications may require a hybrid approach using conventional digital imaging techniques enhanced with bio-inspired analogue sensors. In this specific project, we investigated the apposition compound eye and its characteristics commonly found in diurnal insects and certain species of arthropods. We developed and characterized an array of apposition compound eye-type sensors and tested them on an autonomous robotic vehicle. The robot exhibits the ability to follow a pre-defined target and avoid specified obstacles using a simple control algorithm.

journal_name

Bioinspir Biomim

authors

Davis JD,Barrett SF,Wright CH,Wilcox M

doi

10.1088/1748-3182/4/4/046002

subject

Has Abstract

pub_date

2009-12-01 00:00:00

pages

046002

issue

4

eissn

1748-3182

issn

1748-3190

pii

S1748-3182(09)26857-8

journal_volume

4

pub_type

杂志文章
  • A fast, precise and low-cost replication technique for nano- and high-aspect-ratio structures of biological and artificial surfaces.

    abstract::Biological surfaces are multifunctional interfaces between the organisms and their environment. Properties such as the wettability and adhesion of particles are linked to the micro- and nanostructures of their surfaces. In this study, we used plant and artificial surfaces covered with wax crystals to develop a low-cos...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/3/4/046002

    authors: Koch K,Schulte AJ,Fischer A,Gorb SN,Barthlott W

    更新日期:2008-12-01 00:00:00

  • Configuration optimization of bionic piezoelectric hair sensor for acoustic/tactile detection.

    abstract::Specialized sensory hairs are important biological sensors for arthropods to detect and recognize environmental conditions including acoustic, pressure and airflow signals. However, the present design methodology of such biomimic micro devices are mainly depending on shape mimicking, which greatly restricts their perf...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab8f6c

    authors: Wang Y,Zhao J,Xia Y,Liu P

    更新日期:2020-08-12 00:00:00

  • Design and analysis of coiled fiber reinforced soft pneumatic actuator.

    abstract::Fiber reinforced elastomeric enclosures (FREEs) are soft pneumatic actuators that can contract and generate forces upon pressurization. Typical engineering applications utilize FREEs in their straight cylindrical configuration and derive actuation displacement and forces from their ends. However, there are several ins...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aab19c

    authors: Singh G,Xiao C,Hsiao-Wecksler ET,Krishnan G

    更新日期:2018-04-18 00:00:00

  • Design and modelling of an engineered bacteria-based, pressure-sensitive soil.

    abstract::In this paper, we describe the first steps in the design of a synthetic biological system based on the use of genetically modified bacteria to detect elevated pressures in soils and respond by cementing soil particles. Such a system might, for example, enable a self- constructed foundation to form in response to load ...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aabe15

    authors: Dade-Robertson M,Mitrani H,Corral JR,Zhang M,Hernan L,Guyet A,Wipat A

    更新日期:2018-05-25 00:00:00

  • The application of conducting polymers to a biorobotic fin propulsor.

    abstract::Conducting polymer actuators based on polypyrrole are being developed for use in biorobotic fins that are designed to create and control forces like the pectoral fin of the bluegill sunfish (Lepomis macrochirus). It is envisioned that trilayer bending actuators will be used within, and as, the fin's webbing to create ...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章,评审

    doi:10.1088/1748-3182/2/2/S02

    authors: Tangorra J,Anquetil P,Fofonoff T,Chen A,Del Zio M,Hunter I

    更新日期:2007-06-01 00:00:00

  • Derivation of simple rules for complex flow vector fields on the lower part of the human face for robot face design.

    abstract::It is quite difficult for android robots to replicate the numerous and various types of human facial expressions owing to limitations in terms of space, mechanisms, and materials. This situation could be improved with greater knowledge regarding these expressions and their deformation rules, i.e. by using the biomimet...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa8f33

    authors: Ishihara H,Ota N,Asada M

    更新日期:2017-11-27 00:00:00

  • Bio-inspired sensing and actuating architectures for feedback control of civil structures.

    abstract::Civil structures, such as buildings and bridges, are constantly at risk of failure due to external environmental loads, such as earthquakes or strong winds. To minimize the effects of these loads, active feedback control systems have been proposed but such systems still face numerous challenges which impede their wide...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab033b

    authors: Peckens CA,Cook I,Fogg C

    更新日期:2019-02-27 00:00:00

  • Fluid-structure interaction modeling on a 3D ray-strengthened caudal fin.

    abstract::In this paper, we present a numerical model capable of solving the fluid-structure interaction problems involved in the dynamics of skeleton-reinforced fish fins. In this model, the fluid dynamics is simulated by solving the Navier-Stokes equations using a finite-volume method based on an overset, multi-block structur...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab0fbe

    authors: Shi G,Xiao Q,Zhu Q,Liao W

    更新日期:2019-04-10 00:00:00

  • Reactive conducting polymers as actuating sensors and tactile muscles.

    abstract::Films of conducting polymers when used as electrodes in an electrolytic solution oxidize and reduce under the flow of anodic and cathodic currents, respectively. The electrochemical reactions induce conformational movements of the chains, generation or destruction of free volume and interchange of ions and solvent wit...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/3/3/035004

    authors: Otero TF

    更新日期:2008-09-01 00:00:00

  • Morpho peleides butterfly wing imprints as structural colour stamp.

    abstract::This study presents the replication of a color-causing nanostructure based on the upper laminae of numerous cover scales of Morpho peleides butterfly wings and obtained solely by imprinting their upper-wing surfaces. Our results indicate that a simple casting technique using a novel integrated release agent can obtain...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/11/1/016006

    authors: Zobl S,Salvenmoser W,Schwerte T,Gebeshuber IC,Schreiner M

    更新日期:2016-02-02 00:00:00

  • Mesocarp of Brazil nut (Bertholletia excelsa) as inspiration for new impact resistant materials.

    abstract::Aiming to produce bioinspired impact and puncture resistant materials, the mesocarp of the Brazil nut (Bertholletia excelsa) was characterized. The mesocarp composition was investigated by chemical extraction and its microstructure was analyzed by optical microscopy and microtomography (microCT). A compression test ev...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab2298

    authors: Sonego M,Fleck C,Pessan LA

    更新日期:2019-07-03 00:00:00

  • Bio-inspired annelid robot: a dielectric elastomer actuated soft robot.

    abstract::Biologically inspired robots with inherent softness and body compliance increasingly attract attention in the field of robotics. Aimed at solving existing problems with soft robots, regarding actuation technology and biological principles, this paper presents a soft bio-inspired annelid robot driven by dielectric elas...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa50a5

    authors: Xu L,Chen HQ,Zou J,Dong WT,Gu GY,Zhu LM,Zhu XY

    更新日期:2017-01-31 00:00:00

  • A pressure difference sensor inspired by fish canal lateral line.

    abstract::It is of interest to exploit the insight from the lateral line system of fish for flow sensing applications. In this paper, a novel fish canal lateral line-inspired pressure difference sensor is proposed by embedding an ionic polymer-metal composite (IPMC) sensor within a canal filled with viscous fluid. Such a sensor...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab2fa8

    authors: Sharif MA,Tan X

    更新日期:2019-07-29 00:00:00

  • Biologically inspired coupled antenna beampattern design.

    abstract::We propose to design a small-size transmission-coupled antenna array, and corresponding radiation pattern, having high performance inspired by the female Ormia ochracea's coupled ears. For reproduction purposes, the female Ormia is able to locate male crickets' call accurately despite the small distance between its ea...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/5/4/046003

    authors: Akçakaya M,Nehorai A

    更新日期:2010-12-01 00:00:00

  • Bio-inspired vision based robot control using featureless estimations of time-to-contact.

    abstract::Marvelous vision based dynamic behaviors of insects and birds such as perching, landing, and obstacle avoidance have inspired scientists to propose the idea of time-to-contact, which is defined as the time for a moving observer to contact an object or surface if the current velocity is maintained. Since with only a vi...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa53c4

    authors: Zhang H,Zhao J

    更新日期:2017-01-31 00:00:00

  • Honey bee hairs and pollenkitt are essential for pollen capture and removal.

    abstract::While insect grooming has been observed and documented for over one hundred years, we present the first quantitative analysis of this highly dynamic process. Pollinating insects, like honey bees, purposely cover themselves with millions of pollen particles that, if left ungroomed, would make sensing and controlled fli...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa5c6e

    authors: Amador GJ,Matherne M,Waller D,Mathews M,Gorb SN,Hu DL

    更新日期:2017-03-23 00:00:00

  • Nacre-mimetic bulk lamellar composites reinforced with high aspect ratio glass flakes.

    abstract::Nacre-mimetic epoxy matrix composites reinforced with readily available micron-sized high aspect ratio C-glass flakes were fabricated by a relatively simple, single-step, scalable, time, cost and man-power effective processing strategy: hot-press assisted slip casting (HASC). HASC enables the fabrication of preferenti...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/12/1/016002

    authors: Guner SN,Dericioglu AF

    更新日期:2016-12-05 00:00:00

  • Application of reduced sensor movement sequences as a precursor for search area partitioning and a selection of discrete EEV contour-ring fragments for active electrolocation.

    abstract::In addition to their visual sense, weakly electric fish use active electrolocation to detect and analyse objects in their nearby environment. Their ability to generate and sense electric fields combined with scanning-like swimming movements are intended to extract further parameters like the size, shape and material p...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aae23f

    authors: Wolf-Homeyer S,Engelmann J,Schneider A

    更新日期:2018-10-16 00:00:00

  • Self-healing polymer composites: mimicking nature to enhance performance.

    abstract::Autonomic self-healing materials, where initiation of repair is integral to the material, are being developed for engineering applications. This bio-inspired concept offers the designer an ability to incorporate secondary functional materials capable of counteracting service degradation whilst still achieving the prim...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章,评审

    doi:10.1088/1748-3182/2/1/P01

    authors: Trask RS,Williams HR,Bond IP

    更新日期:2007-03-01 00:00:00

  • A novel mechanism for emulating insect wing kinematics.

    abstract::A novel dual-differential four-bar flapping mechanism that can accurately emulate insect wing kinematics in all three degrees of freedom (translation, rotation and stroke plane deviation) is developed. The mechanism is specifically designed to be simple and scalable such that it can be utilized on an insect-based flap...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/7/3/036017

    authors: Seshadri P,Benedict M,Chopra I

    更新日期:2012-09-01 00:00:00

  • Analytical model and stability analysis of the leading edge spar of a passively morphing ornithopter wing.

    abstract::This paper presents the stability analysis of the leading edge spar of a flapping wing unmanned air vehicle with a compliant spine inserted in it. The compliant spine is a mechanism that was designed to be flexible during the upstroke and stiff during the downstroke. Inserting a variable stiffness mechanism into the l...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/10/6/065003

    authors: Wissa A,Calogero J,Wereley N,Hubbard JE Jr,Frecker M

    更新日期:2015-10-26 00:00:00

  • A neural network with central pattern generators entrained by sensory feedback controls walking of a bipedal model.

    abstract::A neuromechanical simulation of a planar, bipedal walking robot has been developed. It is constructed as a simplified, planar musculoskeletal model of the biomechanics of the human lower body. The controller consists of a dynamic neural network with central pattern generators (CPGs) entrained by force and movement sen...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa8290

    authors: Li W,Szczecinski NS,Quinn RD

    更新日期:2017-10-16 00:00:00

  • Policy gradient optimization of controllers for natural dynamic mono-pedal gait.

    abstract::We have previously suggested a biologically-inspired natural dynamic controller for biped locomotion, which applies torque pulses to the different joints at particular phases of an internal phase variable. The parameters of the controller, including the timing and magnitude of the torque pulses and the dynamics of the...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab782a

    authors: Schallheim I,Zacksenhouse M

    更新日期:2020-03-25 00:00:00

  • Umbrella leaves-Biomechanics of transition zone from lamina to petiole of peltate leaves.

    abstract::In this study we aim to show how the peltate leaves of Colocasia fallax Schott and Tropaeolum majus L., despite their compact design, achieve a rigid connection between petiole and lamina. We have combined various microscopy techniques and computed tomography (CT) scanning for the analysis of the basic structure of th...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab2411

    authors: Sacher M,Lautenschläger T,Kempe A,Neinhuis C

    更新日期:2019-06-20 00:00:00

  • Realization of a Push-Me-Pull-You swimmer at low Reynolds numbers.

    abstract::Locomotion at low Reynolds numbers encounters stringent physical constraints due to the dominance of viscous over inertial forces. A variety of swimming microorganisms has demonstrated diverse strategies to generate self-propulsion in the absence of inertia. In particular, ameboid and euglenoid movements exploit shape...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aba2b9

    authors: Silverberg O,Demir E,Mishler G,Hosoume B,Trivedi NR,Tisch C,Plascencia D,Pak OS,Araci IE

    更新日期:2020-07-03 00:00:00

  • Self-assembly of montmorillonite platelets during drying.

    abstract::This work is prompted by the quest for nanocomposites in which ordered, layered reinforcement preforms similar in structure to the arrangements seen in nacre are achieved without complex automated layer-by-layer assembly. Lamellar structures were obtained in montmorillonite films simply by slow drying without the use ...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/7/4/046004

    authors: Walley P,Zhang Y,Evans JR

    更新日期:2012-12-01 00:00:00

  • The dynamics of hovering flight in hummingbirds, insects and bats with implications for aerial robotics.

    abstract::We analyze the effects of morphology and wing kinematics on the performance of hovering flight. We present a simplified dynamical model with body translational and rotational degrees of freedom that incorporates the flapping, long-axis wing rotation and folding of the wing. To validate our simulation, we compare our r...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aaea56

    authors: Vejdani HR,Boerma DB,Swartz SM,Breuer KS

    更新日期:2018-11-09 00:00:00

  • On the energetics of quadrupedal running: predicting the metabolic cost of transport via a flexible-torso model.

    abstract::In this paper, the effect of torso flexibility on the energetics of quadrupedal bounding is examined in a template setting. Two reductive sagittal-plane models, one with a rigid, non-deformable torso and one with a flexible, unactuated torso are proposed. Both models feature non-trivial leg mass and inertia to capture...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/10/5/056008

    authors: Cao Q,Poulakakis I

    更新日期:2015-09-03 00:00:00

  • How wing kinematics affect power requirements and aerodynamic force production in a robotic bat wing.

    abstract::Bats display a wide variety of behaviors that require different amounts of aerodynamic force. To control and modulate aerodynamic force, bats change wing kinematics, which, in turn, may change the power required for wing motion. There are many kinematic mechanisms that bats, and other flapping animals, can use to incr...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/9/2/025008

    authors: Bahlman JW,Swartz SM,Breuer KS

    更新日期:2014-06-01 00:00:00

  • Energy efficient hopping with Hill-type muscle properties on segmented legs.

    abstract::The intrinsic muscular properties of biological muscles are the main source of stabilization during locomotion, and superior biological performance is obtained with low energy costs. Man-made actuators struggle to reach the same energy efficiency seen in biological muscles. Here, we compare muscle properties within a ...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/11/3/036002

    authors: Rosendo A,Iida F

    更新日期:2016-04-12 00:00:00