Decentralized control mechanism underlying interlimb coordination of millipedes.

Abstract:

:Legged animals exhibit adaptive and resilient locomotion through interlimb coordination. The long-term goal of this study is to clarify the relationship between the number of legs and the inherent decentralized control mechanism for interlimb coordination. As a preliminary step, the study focuses on millipedes as they represent the species with the greatest number of legs among various animal species. A decentralized control mechanism involving local force feedback was proposed based on the qualitative findings of behavioural experiments in which responses to the removal of part of the terrain and leg amputation were observed. The proposed mechanism was implemented in a developed millipede-like robot to demonstrate that the robot can adapt to the removal of the part of the terrain and leg amputation in a manner similar to that in behavioural experiments.

journal_name

Bioinspir Biomim

authors

Kano T,Sakai K,Yasui K,Owaki D,Ishiguro A

doi

10.1088/1748-3190/aa64a5

subject

Has Abstract

pub_date

2017-04-04 00:00:00

pages

036007

issue

3

eissn

1748-3182

issn

1748-3190

journal_volume

12

pub_type

杂志文章
  • A bio-inspired apposition compound eye machine vision sensor system.

    abstract::The Wyoming Information, Signal Processing, and Robotics Laboratory is developing a wide variety of bio-inspired vision sensors. We are interested in exploring the vision system of various insects and adapting some of their features toward the development of specialized vision sensors. We do not attempt to supplant tr...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/4/4/046002

    authors: Davis JD,Barrett SF,Wright CH,Wilcox M

    更新日期:2009-12-01 00:00:00

  • A pressure difference sensor inspired by fish canal lateral line.

    abstract::It is of interest to exploit the insight from the lateral line system of fish for flow sensing applications. In this paper, a novel fish canal lateral line-inspired pressure difference sensor is proposed by embedding an ionic polymer-metal composite (IPMC) sensor within a canal filled with viscous fluid. Such a sensor...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab2fa8

    authors: Sharif MA,Tan X

    更新日期:2019-07-29 00:00:00

  • Fluid-structure interaction modeling on a 3D ray-strengthened caudal fin.

    abstract::In this paper, we present a numerical model capable of solving the fluid-structure interaction problems involved in the dynamics of skeleton-reinforced fish fins. In this model, the fluid dynamics is simulated by solving the Navier-Stokes equations using a finite-volume method based on an overset, multi-block structur...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab0fbe

    authors: Shi G,Xiao Q,Zhu Q,Liao W

    更新日期:2019-04-10 00:00:00

  • Bio-inspired annelid robot: a dielectric elastomer actuated soft robot.

    abstract::Biologically inspired robots with inherent softness and body compliance increasingly attract attention in the field of robotics. Aimed at solving existing problems with soft robots, regarding actuation technology and biological principles, this paper presents a soft bio-inspired annelid robot driven by dielectric elas...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa50a5

    authors: Xu L,Chen HQ,Zou J,Dong WT,Gu GY,Zhu LM,Zhu XY

    更新日期:2017-01-31 00:00:00

  • Genetic engineered color silk: fabrication of a photonics material through a bioassisted technology.

    abstract::Silk produced by the silkworm Bombyx mori is an attractive material because of its luster, smooth and soft texture, conspicuous mechanical strength, good biocompatibility, slow biodegradation, and carbon neutral synthesis. Silkworms have been domesticated and bred for production of better quality and quantity of silk,...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章,评审

    doi:10.1088/1748-3190/aabbe9

    authors: Shimizu K

    更新日期:2018-05-15 00:00:00

  • Walking with perturbations: a guide for biped humans and robots.

    abstract::This paper provides an update on the neural control of bipedal walking in relation to bioinspired models and robots. It is argued that most current models or robots are based on the construct of a symmetrical central pattern generator (CPG). However, new evidence suggests that CPG functioning is basically asymmetrical...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aada54

    authors: Duysens J,Forner-Cordero A

    更新日期:2018-09-04 00:00:00

  • Self-assembly of montmorillonite platelets during drying.

    abstract::This work is prompted by the quest for nanocomposites in which ordered, layered reinforcement preforms similar in structure to the arrangements seen in nacre are achieved without complex automated layer-by-layer assembly. Lamellar structures were obtained in montmorillonite films simply by slow drying without the use ...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/7/4/046004

    authors: Walley P,Zhang Y,Evans JR

    更新日期:2012-12-01 00:00:00

  • Determination of spatial fidelity required to accurately mimic the flight dynamics of a bat.

    abstract::Bats possess unique flight capabilities enabled by their wing morphology. While the articulated bone structure and flexible membrane constituting the wing are known to play a critical role in aerodynamic performance, the relationship has never been robustly quantified. Characterization of the sensitivity between preci...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab3e2a

    authors: Windes P,Tafti DK,Müller R

    更新日期:2019-09-24 00:00:00

  • Optimal propulsive flapping in Stokes flows.

    abstract::Swimming fish and flying insects use the flapping of fins and wings to generate thrust. In contrast, microscopic organisms typically deform their appendages in a wavelike fashion. Since a flapping motion with two degrees of freedom is able, in theory, to produce net forces from a time-periodic actuation at all Reynold...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/9/1/016001

    authors: Was L,Lauga E

    更新日期:2014-03-01 00:00:00

  • Effect of bladder wall thickness on miniature pneumatic artificial muscle performance.

    abstract::Pneumatic artificial muscles (PAMs) are actuators known for their high power to weight ratio, natural compliance and light weight. Due to these advantages, PAMs have been used for orthotic devices and robotic limbs. Small scale PAMs have the same advantages, as well as requiring greatly reduced volumes with potential ...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/10/5/055006

    authors: Pillsbury TE,Kothera CS,Wereley NM

    更新日期:2015-09-28 00:00:00

  • Mesocarp of Brazil nut (Bertholletia excelsa) as inspiration for new impact resistant materials.

    abstract::Aiming to produce bioinspired impact and puncture resistant materials, the mesocarp of the Brazil nut (Bertholletia excelsa) was characterized. The mesocarp composition was investigated by chemical extraction and its microstructure was analyzed by optical microscopy and microtomography (microCT). A compression test ev...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab2298

    authors: Sonego M,Fleck C,Pessan LA

    更新日期:2019-07-03 00:00:00

  • Biomimetic design processes in architecture: morphogenetic and evolutionary computational design.

    abstract::Design computation has profound impact on architectural design methods. This paper explains how computational design enables the development of biomimetic design processes specific to architecture, and how they need to be significantly different from established biomimetic processes in engineering disciplines. The pap...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/7/1/015003

    authors: Menges A

    更新日期:2012-03-01 00:00:00

  • Bio-inspired vision based robot control using featureless estimations of time-to-contact.

    abstract::Marvelous vision based dynamic behaviors of insects and birds such as perching, landing, and obstacle avoidance have inspired scientists to propose the idea of time-to-contact, which is defined as the time for a moving observer to contact an object or surface if the current velocity is maintained. Since with only a vi...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa53c4

    authors: Zhang H,Zhao J

    更新日期:2017-01-31 00:00:00

  • Recent advances in superhydrophobic surfaces and their relevance to biology and medicine.

    abstract::By mimicking naturally occurring superhydrophobic surfaces, scientists can now realize artificial surfaces on which droplets of a few microliters of water are forced to assume an almost spherical shape and an extremely high contact angle. In recent decades, these surfaces have attracted much attention due to their tec...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章,评审

    doi:10.1088/1748-3190/11/1/011001

    authors: Ciasca G,Papi M,Businaro L,Campi G,Ortolani M,Palmieri V,Cedola A,De Ninno A,Gerardino A,Maulucci G,De Spirito M

    更新日期:2016-02-04 00:00:00

  • Solid-state nanopore based biomimetic voltage gated ion channels.

    abstract::Voltage gating is essential to the computational ability of neurons. We show this effect can be mimicked in a solid-state nanopore by functionalizing the pore interior with a redox active molecule. We study the integration of an active biological molecule-a quinone-into a solid state nanopore, and its subsequent induc...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa811b

    authors: Pevarnik M,Cui W,Yemenicioglu S,Rofeh J,Theogarajan L

    更新日期:2017-11-06 00:00:00

  • The bioinspiring potential of weakly electric fish.

    abstract::Electric fish are privileged animals for bio-inspiring man-built autonomous systems since they have a multimodal sense that allows underwater navigation, object classification and intraspecific communication. Although there are taxon dependent variations adapted to different environments, this multimodal system can be...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章,评审

    doi:10.1088/1748-3190/12/2/025004

    authors: Caputi AA

    更新日期:2017-02-02 00:00:00

  • Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation.

    abstract::Neuronal stimulation is an intricate part of understanding insect flight behavior and control insect itself. In this study, we investigated the effects of electrical pulses applied to the brain and basalar muscle of the rhinoceros beetle (Trypoxylus dichotomus). To understand specific neuronal stimulation mechanisms, ...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/7/3/036021

    authors: Van Truong T,Byun D,Lavine LC,Emlen DJ,Park HC,Kim MJ

    更新日期:2012-09-01 00:00:00

  • Musca domestica inspired machine vision sensor with hyperacuity.

    abstract::A fiber optic sensor inspired by the compound eye of the common housefly, Musca domestica, has been developed. The sensor coupled with analog preprocessing hardware has the potential to extract edge information quickly and in parallel. The design is motivated by the parallel nature of the fly's vision system and its d...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/3/2/026003

    authors: Riley DT,Harmann WM,Barrett SF,Wright CH

    更新日期:2008-06-01 00:00:00

  • Self-propelled swimming of a flexible plunging foil near a solid wall.

    abstract::Numerical simulations are conducted to investigate the influences of a solid wall on the self-propelled swimming of a flexible plunging foil. It is found that the presence of a solid wall enhances the cruising speed, with the cost of increasing input power. Rigid foil can achieve high percentage increase in cruising s...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/11/4/046005

    authors: Dai L,He G,Zhang X

    更新日期:2016-07-05 00:00:00

  • Learning from evolutionary optimisation: what are toughening mechanisms good for in dentine, a nonrepairing bone tissue?

    abstract::The main mass of material found in teeth is dentine, a bone-like tissue, riddled with micron-sized tubules and devoid of living cells. It provides support to the outer wear-resistant layer of enamel, and exhibits toughening mechanisms which contribute to crack resistance. And yet unlike most bone tissues, dentine does...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/11/5/051003

    authors: Zaslansky P,Currey JD,Fleck C

    更新日期:2016-09-12 00:00:00

  • Periodic spring-mass running over uneven terrain through feedforward control of landing conditions.

    abstract::This work pursues a feedforward control algorithm for high-speed legged locomotion over uneven terrain. Being able to rapidly negotiate uneven terrain without visual or a priori information about the terrain will allow legged systems to be used in time-critical applications and alongside fast-moving humans or vehicles...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/9/3/036018

    authors: Palmer LR 3rd,Eaton CE

    更新日期:2014-09-01 00:00:00

  • Wing rapid responses and aerodynamics of fruit flies during headwind gust perturbations.

    abstract::Insects are the main source of inspiration for flapping-wing micro air vehicles (FWMAVs). They frequently encounter wind gust perturbations in natural environments, and effectively cope with these perturbations. Here, we investigated the rapid gust response of flies to instruct the gust stability design of FWMAVs. A n...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab97fc

    authors: Gu M,Wu J,Zhang Y

    更新日期:2020-07-07 00:00:00

  • A fast, precise and low-cost replication technique for nano- and high-aspect-ratio structures of biological and artificial surfaces.

    abstract::Biological surfaces are multifunctional interfaces between the organisms and their environment. Properties such as the wettability and adhesion of particles are linked to the micro- and nanostructures of their surfaces. In this study, we used plant and artificial surfaces covered with wax crystals to develop a low-cos...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/3/4/046002

    authors: Koch K,Schulte AJ,Fischer A,Gorb SN,Barthlott W

    更新日期:2008-12-01 00:00:00

  • A novel distributed swarm control strategy based on coupled signal oscillators.

    abstract::The miniaturization of microrobots is accompanied by limitations of signaling, sensing and agility. Control of a swarm of simple microrobots has to cope with such constraints in a way which still guarantees the accomplishment of a task. A recently proposed communication method, which is based on the coupling of signal...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3182/2/3/002

    authors: Hartbauer M,Römer H

    更新日期:2007-09-01 00:00:00

  • Clarity of objectives and working principles enhances the success of biomimetic programs.

    abstract::Biomimetics, the transfer of functional principles from living systems into product designs, is increasingly being utilized by engineers. Nevertheless, recurring problems must be overcome if it is to avoid becoming a short-lived fad. Here we assess the efficiency and suitability of methods typically employed by examin...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa86ff

    authors: Wolff JO,Wells D,Reid CR,Blamires SJ

    更新日期:2017-09-26 00:00:00

  • Policy gradient optimization of controllers for natural dynamic mono-pedal gait.

    abstract::We have previously suggested a biologically-inspired natural dynamic controller for biped locomotion, which applies torque pulses to the different joints at particular phases of an internal phase variable. The parameters of the controller, including the timing and magnitude of the torque pulses and the dynamics of the...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab782a

    authors: Schallheim I,Zacksenhouse M

    更新日期:2020-03-25 00:00:00

  • Bio-inspired composites with functionally graded platelets exhibit enhanced stiffness.

    abstract::Unidirectional composites inspired from biological materials such as nacre are composed of stiff platelets arranged in a staggered manner within a soft matrix. Elaborate analyses have been conducted on the aforementioned composites and they are found to have excellent mechanical properties like stiffness, strength and...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa9945

    authors: Tapse S,Anup S

    更新日期:2017-12-22 00:00:00

  • A comparative study of the effects of vein-joints on the mechanical behaviour of insect wings: I. Single joints.

    abstract::The flight performance of insects is strongly affected by the deformation of the wing during a stroke cycle. Many insects therefore use both active and passive mechanisms to control the deformation of their wings in flight. Several studies have focused on the wing kinematics, and plenty is known about the mechanism of...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/10/5/056003

    authors: Rajabi H,Ghoroubi N,Darvizeh A,Dirks JH,Appel E,Gorb SN

    更新日期:2015-08-20 00:00:00

  • Emergence of behavior through morphology: a case study on an octopus inspired manipulator.

    abstract::The complex motion abilities of the Octopus vulgaris have been an intriguing research topic for biologists and roboticists alike. Various studies have been conducted on the underlying control architectures employed by these high dimensional biological organisms. Researchers have attempted to replicate these architectu...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/ab1621

    authors: Thuruthel TG,Falotico E,Renda F,Flash T,Laschi C

    更新日期:2019-04-24 00:00:00

  • Aerodynamics and flow features of a damselfly in takeoff flight.

    abstract::Flight initiation is fundamental for survival, escape from predators and lifting payload from one place to another in biological fliers and can be broadly classified into jumping and non-jumping takeoffs. During jumping takeoffs, the legs generate most of the initial impulse. Whereas the wings generate most of the for...

    journal_title:Bioinspiration & biomimetics

    pub_type: 杂志文章

    doi:10.1088/1748-3190/aa7f52

    authors: Bode-Oke AT,Zeyghami S,Dong H

    更新日期:2017-09-26 00:00:00