Evaluation of the mechanical properties of powder metallurgy Ti-6Al-7Nb alloy.

Abstract:

:Titanium and its alloys are common biomedical materials owing to their combination of mechanical properties, corrosion resistance and biocompatibility. Powder metallurgy (PM) techniques can be used to fabricate biomaterials with tailored properties because changing the processing parameters, such as the sintering temperature, products with different level of porosity and mechanical performances can be obtained. This study addresses the production of the biomedical Ti-6Al-7Nb alloy by means of the master alloy addition variant of the PM blending elemental approach. The sintering parameters investigated guarantee that the complete diffusion of the alloying elements and the homogenization of the microstructure is achieved. The sintering of the Ti-6Al-7Nb alloy induces a total shrinkage between 7.4% and 10.7% and the level of porosity decreases from 6.2% to 4.7% with the increment of the sintering temperature. Vickers hardness (280-300 HV30) and tensile properties (different combination of strength and elongation around 900MPa and 3%) are achieved.

authors

Bolzoni L,Ruiz-Navas EM,Gordo E

doi

10.1016/j.jmbbm.2016.12.005

subject

Has Abstract

pub_date

2017-03-01 00:00:00

pages

110-116

eissn

1751-6161

issn

1878-0180

pii

S1751-6161(16)30423-4

journal_volume

67

pub_type

杂志文章
  • Bioactive Ti + Mg composites fabricated by powder metallurgy: The relation between the microstructure and mechanical properties.

    abstract::Metallic implant materials are biomaterials that have experienced major development over the last fifty years, yet some demands posed to them have not been addressed. For the osseointegration process and the outcome of endosseous implantation, it is crucial to reduce the stress shielding effect and achieve sufficient ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.10.008

    authors: Balog M,Ibrahim AMH,Krizik P,Bajana O,Klimova A,Catic A,Schauperl Z

    更新日期:2019-02-01 00:00:00

  • A constitutive law for degrading bioresorbable polymers.

    abstract::This paper presents a constitutive law that predicts the changes in elastic moduli, Poisson's ratio and ultimate tensile strength of bioresorbable polymers due to biodegradation. During biodegradation, long polymer chains are cleaved by hydrolysis reaction. For semi-crystalline polymers, the chain scissions also lead ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.02.026

    authors: Samami H,Pan J

    更新日期:2016-06-01 00:00:00

  • Fatigue life of bovine meniscus under longitudinal and transverse tensile loading.

    abstract::The knee meniscus is composed of a fibrous extracellular matrix that is subjected to large and repeated loads. Consequently, the meniscus is frequently torn, and a potential mechanism for failure is fatigue. The objective of this study was to measure the fatigue life of bovine meniscus when applying cyclic tensile loa...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.12.020

    authors: Creechley JJ,Krentz ME,Lujan TJ

    更新日期:2017-05-01 00:00:00

  • Characterization of a new decellularized bovine pericardial biological mesh: Structural and mechanical properties.

    abstract::Implants made from naturally-derived biomaterials, also called biological meshes or biomeshes, typically derive from decellularized extracellular matrix of either animal or human tissue. Biomeshes have many biomedical applications such as ligament repair, bone and cartilage regeneration and soft tissue replacement. Bo...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.12.003

    authors: Bielli A,Bernardini R,Varvaras D,Rossi P,Di Blasi G,Petrella G,Buonomo OC,Mattei M,Orlandi A

    更新日期:2018-02-01 00:00:00

  • Bite force mechanics and allometry of piranha (Serrasalmidae).

    abstract::The bite force of the piranha (Serrasalmidae) has drawn considerable attention due to its ability to effectively capture and masticate prey. Herein, we analyze theoretical anterior bite forces using a lever approach and compare them to in-vivo maximum bite forces. We provide a mechanics analysis that explains the scal...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104296

    authors: Velasco-Hogan A,Meyers MA

    更新日期:2021-03-01 00:00:00

  • Preparation of low shrinkage methacrylate-based resin system without Bisphenol A structure by using a synthesized dendritic macromer (G-IEMA).

    abstract::With the growing attention on estrogenic effect of Bisphenol A (BPA), the application of BPA derivatives like Bis-GMA in dental materials has also been doubted. In this research, new BPA free dental resin systems were prepared with synthesized dendritic macromer G-IEMA, UDMA, and TEGDMA. Physicochemical properties, su...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2014.03.012

    authors: Yu B,Liu F,He J

    更新日期:2014-07-01 00:00:00

  • Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope.

    abstract::The elastic modulus of an oral cancer cell line UM1 is investigated by nanoindentation in an atomic force microscope with a flat-ended tip. The commonly used Hertzian method gives apparent elastic modulus which increases with the loading rate, indicating strong effects of viscoelasticity. On the contrary, a rate-jump ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.11.010

    authors: Zhou ZL,Ngan AH,Tang B,Wang AX

    更新日期:2012-04-01 00:00:00

  • Articular cartilage surface rupture during compression: investigating the effects of tissue hydration in relation to matrix health.

    abstract::This study aimed at investigating articular cartilage rupture by investigating the response of healthy and degenerate cartilage through altering the osmotic swelling environment of surface-intact, cartilage-on-bone specimens. The osmotic environment in healthy and degenerate bovine cartilage was varied by soaking tiss...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.04.018

    authors: Fick JM,Espino DM

    更新日期:2011-10-01 00:00:00

  • Adhesion failure behavior of sputtered calcium phosphate thin film coatings evaluated using microscratch testing.

    abstract::It is generally accepted that calcium phosphate (CaP) is one of the most important biomaterials in implant coating applications mainly because of its excellent bioactivity. However, its relatively poor mechanical properties limits its application. This entails that a better understanding of the mechanical properties o...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2010.01.002

    authors: Toque JA,Herliansyah MK,Hamdi M,Ide-Ektessabi A,Sopyan I

    更新日期:2010-05-01 00:00:00

  • Mechanical properties of bovine cortical bone based on the automated ball indentation technique and graphics processing method.

    abstract::Cortical bone provides the main form of support in humans and other vertebrates against various forces. Thus, capturing its mechanical properties is important. In this study, the mechanical properties of cortical bone were investigated by using automated ball indentation and graphics processing at both the macroscopic...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.11.039

    authors: Zhang A,Zhang S,Bian C

    更新日期:2018-02-01 00:00:00

  • Analysis of the mechanical response of biomimetic materials with highly oriented microstructures through 3D printing, mechanical testing and modeling.

    abstract::Many biomineralized organisms have evolved highly oriented nanostructures to perform specific functions. One key example is the abrasion-resistant rod-like microstructure found in the radular teeth of Chitons (Cryptochiton stelleri), a large mollusk. The teeth consist of a soft core and a hard shell that is abrasion r...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.03.026

    authors: de Obaldia EE,Jeong C,Grunenfelder LK,Kisailus D,Zavattieri P

    更新日期:2015-08-01 00:00:00

  • Influence of Si addition on the microstructure and mechanical properties of Ti-35Nb alloy for applications in orthopedic implants.

    abstract::In the development of new materials for orthopedic implants, special attention has been given to Ti alloys that show biocompatible alloy elements and that are capable of reducing the elastic modulus. Accordingly, Ti-Nb-Si alloys show great potential for application. Thus, this is a study on the microstructures and pro...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.06.035

    authors: Tavares AM,Ramos WS,de Blas JC,Lopes ES,Caram R,Batista WW,Souza SA

    更新日期:2015-11-01 00:00:00

  • A comprehensive combined experimental and computational framework for pre-clinical wear simulation of total knee replacements.

    abstract::A more robust pre-clinical wear simulation framework is required in order to simulate wider and higher ranges of activities, observed in different patient populations such as younger more active patients. Such a framework will help to understand and address the reported higher failure rates for younger and more active...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.11.022

    authors: Abdelgaied A,Fisher J,Jennings LM

    更新日期:2018-02-01 00:00:00

  • Tissue mechanics of piled critical size biomimetic and biominerizable nanocomposites: Formation of bioreactor-induced stem cell gradients under perfusion and compression.

    abstract:BACKGROUND:Perfusion bioreactors are used to solve problems in critical size bone tissue engineering. Biominerizable and biocompatible nanocomposites are suitable scaffold materials for this purpose because they offer mineral components in organic carriers. Human adipose derived stem cells (ASCs) can potentially be use...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.03.022

    authors: Baumgartner W,Welti M,Hild N,Hess SC,Stark WJ,Bürgisser GM,Giovanoli P,Buschmann J

    更新日期:2015-07-01 00:00:00

  • Mechanical modeling and characterization of meniscus tissue using flat punch indentation and inverse finite element method.

    abstract::In this paper, to characterize the mechanical properties of meniscus by considering its local microstructure, a novel nonlinear poroviscoelastic Finite Element (FE) model has been developed. To obtain the mechanical response of meniscus, indentation experiments were performed on bovine meniscus samples. The ramp-relax...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.09.023

    authors: Seyfi B,Fatouraee N,Imeni M

    更新日期:2018-01-01 00:00:00

  • Interfacial indentations in biological composites.

    abstract::Biocomposites comprise highly stiff reinforcement elements connected by a compliant matrix material. While the interfacial elastic properties of these biocomposites play a key role in determining the mechanical properties of the entire biocomposite, these properties cannot be measured directly from standard nanomechan...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104209

    authors: Shelef Y,Bar-On B

    更新日期:2021-02-01 00:00:00

  • Stem cell therapy restores viscoelastic properties of myocardium in rat model of hypertension.

    abstract::Extensive remodeling of the myocardium is seen in a variety of cardiovascular diseases, including systemic hypertension. Stem cell therapy has been proposed to improve the clinical outcomes of hypertension, and we hypothesized that changes in mechanical properties of the myocardium would accompany the progression of d...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.11.041

    authors: Rubiano A,Qi Y,Guzzo D,Rathinasabapathy A,Rowe K,Pepine C,Simmons C

    更新日期:2016-06-01 00:00:00

  • Combined magnetic resonance and diffusion tensor imaging analyses provide a powerful tool for in vivo assessment of deformation along human muscle fibers.

    abstract::Muscle fiber direction strain provides invaluable information for characterizing muscle function. However, methods to study this for human muscles in vivo are lacking. Using magnetic resonance (MR) imaging based deformation analyses and diffusion tensor (DT) imaging based tractography combined, we aimed to assess musc...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.06.031

    authors: Pamuk U,Karakuzu A,Ozturk C,Acar B,Yucesoy CA

    更新日期:2016-10-01 00:00:00

  • Material property discontinuities in intervertebral disc porohyperelastic finite element models generate numerical instabilities due to volumetric strain variations.

    abstract::Numerical studies of the intervertebral disc (IVD) are important to better understand the load transfer and the mechanobiological processes within the disc. Among the relevant calculations, fluid-related outputs are critical to describe and explore accurately the tissue properties. Porohyperelastic finite element mode...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.05.012

    authors: Ruiz C,Noailly J,Lacroix D

    更新日期:2013-10-01 00:00:00

  • Analysis of behind the armor ballistic trauma.

    abstract::The impact response of body armor composed of a ceramic plate with an ultrahigh molecular weight polyethylene (UHMWPE) fiber-reinforced composite and layers of UHMWPE fibers shielding a block of ballistic gelatin has been experimentally and numerically analyzed. It is a surrogate model for studying injuries to human t...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.01.010

    authors: Wen Y,Xu C,Wang S,Batra RC

    更新日期:2015-05-01 00:00:00

  • Development and optimisation of hydroxyapatite-ß-TCP functionally gradated biomaterial.

    abstract::Use of hydroxyapatite (HAP) for biomaterials is widely established, often in a combination with titanium alloy substrates in orthopaedic and other implants. Porous HAP-based coatings undergo sintering and heat treatment processes to achieve proper level of density yet avoiding undesirable reactions and phase changes. ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.11.017

    authors: Gasik M,Keski-Honkola A,Bilotsky Y,Friman M

    更新日期:2014-02-01 00:00:00

  • A study of extracellular matrix remodeling in aortic heart valves using a novel biaxial stretch bioreactor.

    abstract::In aortic valves, biaxial cyclic stretch is known to modulate cell differentiation, extracellular matrix (ECM) synthesis and organization. We designed a novel bioreactor that can apply independent and precise stretch along radial and circumferential directions in a tissue culture environment. While this bioreactor can...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.07.041

    authors: Lei Y,Masjedi S,Ferdous Z

    更新日期:2017-11-01 00:00:00

  • Effect of solvent/disinfectant ethanol on the micro-surface structure and properties of multiphase denture base polymers.

    abstract:AIM OF THE STUDY:The aim of this study was to evaluate the effect of solvent/disinfectant ethanol on the surface of denture base polymers. Changes in surface roughness, topography and some nanomechanical properties were assessed by SEM and nanoindentation plotted against different concentrations of ethanol on heat cure...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.09.007

    authors: Basavarajappa S,Al-Kheraif AA,ElSharawy M,Vallittu PK

    更新日期:2016-02-01 00:00:00

  • Evaluation of experimental, analytical, and computational methods to determine long-bone bending stiffness.

    abstract::Methods used to evaluate bone mechanical properties vary widely depending on the motivation and environment of individual researchers, clinicians, and industries. Further, the innate complexity of bone makes validation of each method difficult. Thus, the purpose of the present research was to quantify methodological e...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104253

    authors: Collins CJ,Yang B,Crenshaw TD,Ploeg HL

    更新日期:2021-03-01 00:00:00

  • Mechanical, bactericidal and osteogenic behaviours of hydrothermally synthesised TiO2 nanowire arrays.

    abstract::The application of orthopaedic implants is associated with risks of bacterial infection and long-term antibiotic therapy. This problem has led to the study of implants with nano-textured surfaces as a method of inhibiting bacterial adhesion and reducing implant failure due to infection. In this research, various nano-...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.02.011

    authors: Jaggessar A,Mathew A,Wang H,Tesfamichael T,Yan C,Yarlagadda PK

    更新日期:2018-04-01 00:00:00

  • Interfacial bonding between mineral platelets in bone and its effect on mechanical properties of bone.

    abstract::Bone is a composite material consisting principally of apatite mineral, collagen fibrils, non-collagenous proteins, and other organic species. Recent electron microscopy studies have shown that the mineral in bone occurs as stacks of thin polycrystalline sheets ("mineral lamellae," MLs) which surround and lie between ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104132

    authors: Pang S,Schwarcz HP,Jasiuk I

    更新日期:2021-01-01 00:00:00

  • Micromechanisms of fatigue crack growth in polycarbonate polyurethane: Time dependent and hydration effects.

    abstract::Polycarbonate polyurethane has cartilage-like, hygroscopic, and elastomeric properties that make it an attractive material for orthopedic joint replacement application. However, little data exists on the cyclic loading and fracture behavior of polycarbonate polyurethane. This study investigates the mechanisms of fatig...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.01.008

    authors: Ford AC,Gramling H,Li SC,Sov JV,Srinivasan A,Pruitt LA

    更新日期:2018-03-01 00:00:00

  • Relationships between the morphology, swelling and mechanical properties of poly(dimethyl siloxane)/poly(acrylic acid) interpenetrating networks.

    abstract::A limitation in the use of hydrophilic polymers as implantable devices is their inherently poor mechanical strength. Using interpenetrating polymer networks (IPNs) consisting of both hydrophilic and hydrophobic networks is an effective method of strengthening these polymers. In this work, a series of poly(dimethyl sil...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2009.01.002

    authors: Jalili K,Abbasi F,Oskoee SS,Alinejad Z

    更新日期:2009-10-01 00:00:00

  • Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.

    abstract::The current study is part of an ongoing research program to develop an advanced new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite with a “sandwich structure” as a substitute for metallic materials for orthopedic long bone fracture plate applications. The purpose of this study was to assess the fatigue prope...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:

    authors: Bagheri ZS,El Sawi I,Bougherara H,Zdero R

    更新日期:2014-07-01 00:00:00

  • µ-Particle tracking velocimetry and computational fluid dynamics study of cell seeding within a 3D porous scaffold.

    abstract::Cell seeding of 3D scaffolds is a critical step in tissue engineering since the final tissue properties are related to the initial cell distribution and density within the scaffold unit. Perfusion systems can transport cells to the scaffold however; the fact that cells flow inside the scaffold pores does not guarantee...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.08.003

    authors: Marin AC,Grossi T,Bianchi E,Dubini G,Lacroix D

    更新日期:2017-11-01 00:00:00