µ-Particle tracking velocimetry and computational fluid dynamics study of cell seeding within a 3D porous scaffold.

Abstract:

:Cell seeding of 3D scaffolds is a critical step in tissue engineering since the final tissue properties are related to the initial cell distribution and density within the scaffold unit. Perfusion systems can transport cells to the scaffold however; the fact that cells flow inside the scaffold pores does not guarantee cell deposition onto the scaffold substrate and cell attachment. The aim of this study was to investigate how fluid flow conditions modulate cell motion and deposition during perfusion. For such a purpose, a multiphase-based computational fluid dynamics (CFD) model was developed in conjunction with particle tracking velocimetry experiments (PTV) which for the first time were applied to observe cell seeding inside a 3D scaffold. CFD and PTV results showed the strong effect of gravity for lower flow rates leading to cell sedimentation and poor transport of cells to the scaffold. Higher flow rates help overcome the effect of gravity so more cells travelling inside the scaffold were found. Nonetheless, fluid flow drags cells along the fluid streamlines without intercepting the scaffold substrate. As a consequence, if cells do not deposit into the scaffold substrate, cell adhesion cannot occur. Therefore, cell-scaffold interception should be promoted and the present computational model which predicts the effect of gravity and fluid drag on cells trajectories could serve to optimise bioreactors and enhance cell seeding efficiency.

authors

Marin AC,Grossi T,Bianchi E,Dubini G,Lacroix D

doi

10.1016/j.jmbbm.2017.08.003

subject

Has Abstract

pub_date

2017-11-01 00:00:00

pages

463-469

eissn

1751-6161

issn

1878-0180

pii

S1751-6161(17)30334-X

journal_volume

75

pub_type

杂志文章
  • Monotonic and cyclic loading behavior of porous scaffolds made from poly(para-phenylene) for orthopedic applications.

    abstract::Porous poly(para-phenylene) (PPP) scaffolds have tremendous potential as an orthopedic biomaterial; however, the underlying mechanisms controlling the monotonic and cyclic behavior are poorly understood. The purpose of this study was to develop a method to integrate micro-computed tomography (μCT), finite-element anal...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2014.10.004

    authors: Hoyt AJ,Yakacki CM,Fertig RS 3rd,Dana Carpenter R,Frick CP

    更新日期:2015-01-01 00:00:00

  • Simulating damage onset and evolution in fully bio-resorbable composite under three-point bending.

    abstract::This paper presents a strain-based damage model to predict the stress-strain relationship and investigate the damage onset and evolution of the fibre and matrix of a fully bio-resorbable phosphate glass fibre reinforced composite under three-point bending. The flexural properties of the composite are crucial, particul...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.02.022

    authors: Gao X,Chen M,Yang X,Harper L,Ahmed I,Lu J

    更新日期:2018-05-01 00:00:00

  • Development of a bite force transducer for measuring maximum voluntary bite forces between individual opposing tooth surfaces.

    abstract::Bite forces are studied in order to understand a wide range of factors pertaining to the mastication system. Various strain gauge transducers have been employed to measure bite forces, with several descriptions of these available in the literature; unfortunately, many reports provide insufficient detail to enable accu...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.103846

    authors: Jansen van Vuuren L,Jansen van Vuuren WA,Broadbent JM,Duncan WJ,Waddell JN

    更新日期:2020-09-01 00:00:00

  • Influence of cold rolling and ageing treatment on microstructure and mechanical properties of Ti-30Nb-5Ta-6Zr alloy.

    abstract::In this study, the relationship between deformation mechanism and rolling reductions was investigated, and the effects of deformation reductions on the microstructure and mechanical properties of the alloys both cold rolled and aged were revealed. It was found that the equiaxed β grains of the Ti-30Nb-5Ta-6Zr alloy ha...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.06.006

    authors: Wang Y,Zhao J,Dai S,Chen F,Yu X,Zhang Y

    更新日期:2013-11-01 00:00:00

  • Mechano-rheological properties of the murine thrombus determined via nanoindentation and finite element modeling.

    abstract::Deep vein thrombosis, pulmonary embolism, and abdominal aortic aneurysms are blood-related diseases that represent a major public health problem. These diseases are characterized by the formation of a thrombus (i.e., blood clot) that either blocks a major artery or causes an aortic rupture. Identifying the mechanical ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2012.02.012

    authors: Slaboch CL,Alber MS,Rosen ED,Ovaert TC

    更新日期:2012-06-01 00:00:00

  • Understanding hydration effects on mechanical and impacting properties of turtle shell.

    abstract::Study of the properties of natural biomaterials provides a reliable experimental basis for the design of biomimetic materials. The mechanical properties and impact wear behaviors of turtle shell with different soaking time were investigated on a micro-amplitude impact wear tester. The damage behavior of turtle shells ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.11.007

    authors: Zhang X,Cai ZB,Li W,Zhu MH

    更新日期:2018-02-01 00:00:00

  • Mechanical and biological behavior of ultrafine-grained Ti alloy aneurysm clip processed using high-pressure torsion.

    abstract::Severe plastic deformation (SPD) has recently been advanced as the main process for fabricating bulk ultrafine grained or nanocrystalline metallic materials, which present much higher strength and better bio-compatibility than coarse-grained counterparts. Medical devices, such as aneurysm clips and dental implants, re...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.02.002

    authors: Um HY,Park BH,Ahn DH,Abd El Aal MI,Park J,Kim HS

    更新日期:2017-04-01 00:00:00

  • An adaptive finite element simulation of fretting wear damage at the head-neck taper junction of total hip replacement: The role of taper angle mismatch.

    abstract::An adaptive finite element simulation was developed to predict fretting wear in a head-neck taper junction of hip joint implant through a two dimensional (2D) model and based on the Archard wear equation. This model represents the most critical section of the head-neck junction which was identified from a 3D model of ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.07.003

    authors: Fallahnezhad K,Oskouei RH,Badnava H,Taylor M

    更新日期:2017-11-01 00:00:00

  • Simultaneous observation of calcium signaling response and membrane deformation due to localized mechanical stimulus in single osteoblast-like cells.

    abstract::Biochemical signals related to a mechanosensory mechanism by which cells sense mechanical stimuli have been gradually clarified by biological approaches such as blocking specific signaling pathways; however, mechanical signals such as deformation/strain, which is transduced into biochemical signals through this mechan...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2007.06.003

    authors: Adachi T,Sato K,Higashi N,Tomita Y,Hojo M

    更新日期:2008-01-01 00:00:00

  • Experimental validation of finite element model for proximal composite femur using optical measurements.

    abstract::Patient-specific finite element models have been used to predict femur strength and fracture risk in individuals. Validation of the adopted finite element modelling procedure against mechanical testing data is a crucial step when aiming for clinical applications. The majority of the works available in literature used ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.02.006

    authors: Grassi L,Väänänen SP,Amin Yavari S,Weinans H,Jurvelin JS,Zadpoor AA,Isaksson H

    更新日期:2013-05-01 00:00:00

  • How mechanical stresses modulate enamel demineralization in non-carious cervical lesions?

    abstract:OBJECTIVE:To introduce an experimental non-carious cervical lesion (NCCL) model for studying the influence of presence and type of stress (tension or compression) on acid effects involved in NCCL formation on the enamel near the cement-enamel junction (CEJ). METHODS:108 bovine incisors were cut into 18 × 3×3 mm3 beams...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.11.003

    authors: Leal NMS,Silva JL,Benigno MIM,Bemerguy EA,Meira JBC,Ballester RY

    更新日期:2017-02-01 00:00:00

  • Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting.

    abstract::Total knee replacement implants consisting of a Co-29Cr-6Mo alloy femoral component and a Ti-6Al-4V tibial component are the basis for the additive manufacturing of novel solid, mesh, and foam monoliths using electron beam melting (EBM). Ti-6Al-4V solid prototype microstructures were primarily α-phase acicular platele...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.05.010

    authors: Murr LE,Amato KN,Li SJ,Tian YX,Cheng XY,Gaytan SM,Martinez E,Shindo PW,Medina F,Wicker RB

    更新日期:2011-10-01 00:00:00

  • Finite Element simulation of buckling-induced vein tortuosity and influence of the wall constitutive properties.

    abstract::The mechanisms giving rise to vein tortuosity, which is often associated with varicosis, are poorly understood. Recent works suggest that significant biological changes in the wall of varicose veins may precede the mechanical aspects of the disease. To test the hypothesis of tortuosity being a consequence of these cha...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.05.006

    authors: Badel P,Rohan CP,Avril S

    更新日期:2013-10-01 00:00:00

  • Study of indentation of a sample equine bone using finite element simulation and single cycle reference point indentation.

    abstract::In an attempt to study the mechanical behavior of bone under indentation, methods of analyses and experimental validations have been developed, with a selected test material. The test material chosen is from an equine cortical bone. Stress-strain relationships are first obtained from conventional mechanical property t...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2014.11.020

    authors: Hoffseth K,Randall C,Hansma P,Yang HT

    更新日期:2015-02-01 00:00:00

  • Synthesis and characterization of a novel open cellular Mg-based scaffold for tissue engineering application.

    abstract::Tissue engineering is a field which aims to regenerate damaged tissues by enhancing tissue growth through the porous architecture of the scaffolds which is desired to mimic the human cancellous bone. Mg-based scaffolds are gaining importance in the field of tissue engineering owing to its potential application as a bi...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.02.010

    authors: Singh S,Vashisth P,Shrivastav A,Bhatnagar N

    更新日期:2019-06-01 00:00:00

  • The effect of ethanol on surface of semi-interpenetrating polymer network (IPN) polymer matrix of glass-fibre reinforced composite.

    abstract:AIM OF THE STUDY:The aim of this laboratory study was to evaluate the effect of ethanol treatment on the surface roughness (Sa), nano-mechanical properties (NMP) and surface characterization of dental fiber reinforced composite (FRC) with semi-interpenetrating polymer network (IPN). MATERIALS AND METHODS:A total of 24...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.05.030

    authors: Basavarajappa S,Perea-Lowery L,Aati S,Abdullah Al-Kheraif AA,Ramakrishnaiah R,Matinlinna JP,Vallittu PK

    更新日期:2019-10-01 00:00:00

  • Fabrication and mechanical properties of Al2O3/SiC/ZrO2 functionally graded material by electrophoretic deposition.

    abstract::This study describes the synthesis of Al(2)O(3)/SiC/ZrO(2) functionally graded material (FGM) in bio-implants (artificial joints) by electrophoretic deposition (EPD). A suitable suspension that was based on 2-butanone was applied for the EPD of Al(2)O(3)/SiC/ZrO(2), and a pressureless sintering process was applied as ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2012.02.029

    authors: Askari E,Mehrali M,Metselaar IH,Kadri NA,Rahman MM

    更新日期:2012-08-01 00:00:00

  • Numerical identification method for the non-linear viscoelastic compressible behavior of soft tissue using uniaxial tensile tests and image registration - application to rat lung parenchyma.

    abstract::This paper presents an improved identification method of the constitutive properties of lung parenchyma. We aim to determine the non-linear viscoelastic behavior of lung parenchyma with a particular focus on the compressible properties - i.e. the ability to change volume. Uniaxial tensile tests are performed on living...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.09.018

    authors: Bel-Brunon A,Kehl S,Martin C,Uhlig S,Wall WA

    更新日期:2014-01-01 00:00:00

  • Identification of biomechanical properties in vivo in human uterine cervix.

    abstract:BACKGROUND AND AIMS:The course and outcome of pregnancy is closely correlated to change of biomechanical properties of the uterine cervix. The aim of this study was to build a non-linear, fiber reinforced mechanical model of the cervix for estimation of mechanical characteristics of the cervix in early- and term-pregna...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2014.07.005

    authors: Liao D,Hee L,Sandager P,Uldbjerg N,Gregersen H

    更新日期:2014-11-01 00:00:00

  • Dehydration effect on the mechanical behaviour of biological soft tissues: observations on kidney tissues.

    abstract::This paper deals with the effects of dehydration on the mechanical properties of biological soft tissues and with the validity of methods used in previous works such as a coat of petroleum jelly or silicon oil to minimise the drying of the tissue during mechanical testing. We find that the samples get stiffer as they ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2010.07.010

    authors: Nicolle S,Palierne JF

    更新日期:2010-11-01 00:00:00

  • On multiscale boundary conditions in the computational homogenization of an RVE of tendon fascicles.

    abstract::Present study provides a numerical investigation on multiscale boundary conditions in the computational homogenization of a representative volume element (RVE) of tendon fascicles. A three-dimensional hexagonal-helicoidal finite element RVE composed of two material phases (collagen fibers and cells) and three finite s...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.12.003

    authors: Carniel TA,Klahr B,Fancello EA

    更新日期:2019-03-01 00:00:00

  • Blast effect on the lower extremities and its mitigation: a computational study.

    abstract::A series of computational studies were performed to investigate the response of the lower extremities of mounted soldiers under landmine detonation. A numerical human body model newly developed at Wayne State University was used to simulate two types of experimental studies and the model predictions were validated aga...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.07.010

    authors: Dong L,Zhu F,Jin X,Suresh M,Jiang B,Sevagan G,Cai Y,Li G,Yang KH

    更新日期:2013-12-01 00:00:00

  • Constitutive modeling of the passive inflation-extension behavior of the swine colon.

    abstract::In the present work, we propose the first structural constitutive model of the passive mechanical behavior of the swine colon that is validated against physiological inflation-extension tests, and accounts for residual strains. Sections from the spiral colon and the descending colon were considered to investigate pote...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.08.031

    authors: Patel B,Chen H,Ahuja A,Krieger JF,Noblet J,Chambers S,Kassab GS

    更新日期:2018-01-01 00:00:00

  • On the wear behavior and damage mechanism of bonded interface: Ceramic vs resin composite inlays.

    abstract::Advances in adhesive technologies have increased indications for the use of inlays. Decrease in the bonded interface integrity due to wear has been cited as the main cause of its failure. However, this process of interface degradation and the influence of inlay material on damage mechanism appear to be poorly understo...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.103430

    authors: Yu P,Xiong Y,Zhao P,Xu Z,Yu H,Arola D,Gao S

    更新日期:2020-01-01 00:00:00

  • An interpenetrating network composite for a regenerative spinal disc application.

    abstract::Severe degeneration of the intervertebral disc has an immensely debilitating effect on quality of life that has become a serious health and economic burden throughout the world. The disc plays an integral role in biomechanical movement and support within the spine. The emergence of tissue engineering endeavours to res...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.10.015

    authors: Chan AH,Boughton PC,Ruys AJ,Oyen ML

    更新日期:2017-01-01 00:00:00

  • Biomechanics of stomach tissues and structure in patients with obesity.

    abstract::Even though bariatric surgery is one of the most effective treatment option of obesity, post-surgical weight loss is not always ensured, especially in the long term, when many patients experience weight regain. Bariatric procedures are largely based on surgeon's expertise and intra-operative decisions, while an integr...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.103883

    authors: Carniel EL,Albanese A,Fontanella CG,Pavan PG,Prevedello L,Salmaso C,Todros S,Toniolo I,Foletto M

    更新日期:2020-10-01 00:00:00

  • Transient stiffening of cartilage during joint articulation: A microindentation study.

    abstract::As a mechanoactive tissue, articular cartilage undergoes compression and shear on a daily basis. With the advent of high resolution and sensitive mechanical testing methods, such as micro- and nanoindentation, it has become possible to assess changes in small-scale mechanical properties due to compression and shear of...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104113

    authors: Yuh C,Laurent MP,Espinosa-Marzal RM,Chubinskaya S,Wimmer MA

    更新日期:2021-01-01 00:00:00

  • Transient behavior and relaxation of microcapsules with a cross-linked human serum albumin membrane.

    abstract::Capsules consist of droplets enclosed by a membrane with shear resistant properties especially when fabricated by interfacial cross-linking. In many applications, the protection and release of the internal medium need to be strictly controlled. It is possible to tune the membrane mechanical properties by changing the ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.09.008

    authors: Gires PY,Barthès-Biesel D,Leclerc E,Salsac AV

    更新日期:2016-05-01 00:00:00

  • How does lubricant viscosity affect the wear behaviour of VitE-XLPE articulated against CoCr?

    abstract::Using a 50-station pin-on-disc (SuperCTPOD) machine, the influence of lubricant viscosity on the wear of vitamin E blended crosslinked polyethylene was investigated. Five different test lubricants were prepared by mixing different concentrations of carboxymethyl cellulose powder with deionised water. The viscosity ran...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104067

    authors: Kandemir G,Smith S,Chen J,Joyce TJ

    更新日期:2020-12-01 00:00:00

  • Tensile biomechanical properties and constitutive parameters of human corneal stroma extracted by SMILE procedure.

    abstract::The biomechanical behavior of human corneal stroma under uniaxial tension was investigated by the experimental analysis of cornea stromal lenticules taken out by corneal refractive surgery. Uniaxial tests were conducted to determine their stress-strain relationship and tensile strength. The Gasser-Ogden-Holzapfel (GOH...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.05.042

    authors: Xiang Y,Shen M,Xue C,Wu D,Wang Y

    更新日期:2018-09-01 00:00:00