A constitutive law for degrading bioresorbable polymers.

Abstract:

:This paper presents a constitutive law that predicts the changes in elastic moduli, Poisson's ratio and ultimate tensile strength of bioresorbable polymers due to biodegradation. During biodegradation, long polymer chains are cleaved by hydrolysis reaction. For semi-crystalline polymers, the chain scissions also lead to crystallisation. Treating each scission as a cavity and each new crystal as a solid inclusion, a degrading semi-crystalline polymer can be modelled as a continuum solid containing randomly distributed cavities and crystal inclusions. The effective elastic properties of a degrading polymer are calculated using existing theories for such solid and the tensile strength of the degrading polymer is predicted using scaling relations that were developed for porous materials. The theoretical model for elastic properties and the scaling law for strength form a complete constitutive relation for the degrading polymers. It is shown that the constitutive law can capture the trend of the experimental data in the literature for a range of biodegradable polymers fairly well.

authors

Samami H,Pan J

doi

10.1016/j.jmbbm.2016.02.026

subject

Has Abstract

pub_date

2016-06-01 00:00:00

pages

430-445

eissn

1751-6161

issn

1878-0180

pii

S1751-6161(16)00079-5

journal_volume

59

pub_type

杂志文章
  • Simultaneous observation of calcium signaling response and membrane deformation due to localized mechanical stimulus in single osteoblast-like cells.

    abstract::Biochemical signals related to a mechanosensory mechanism by which cells sense mechanical stimuli have been gradually clarified by biological approaches such as blocking specific signaling pathways; however, mechanical signals such as deformation/strain, which is transduced into biochemical signals through this mechan...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2007.06.003

    authors: Adachi T,Sato K,Higashi N,Tomita Y,Hojo M

    更新日期:2008-01-01 00:00:00

  • Fracture resistance of CAD/CAM occlusal veneers: A systematic review of laboratory studies.

    abstract:OBJECTIVE:The purpose of this systematic review was to summarize scientific evidence that evaluates in vitro fracture and fatigue strength of occlusal veneers in different thicknesses, CAD/CAM materials, and under different aging methodologies. MATERIALS AND METHODS:An electronic search of 3 English databases (The Nat...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章,评审

    doi:10.1016/j.jmbbm.2020.103948

    authors: Albelasy EH,Hamama HH,Tsoi JKH,Mahmoud SH

    更新日期:2020-10-01 00:00:00

  • Finite element analysis of the human mastication cycle.

    abstract::The aim of this paper is to propose a biomechanical model that could serve as a tool to overcome some difficulties encountered in experimental studies of the mandible. One of these difficulties is the inaccessibility of the temporomandibular joint (TMJ) and the lateral pterygoid muscle. The focus of this model is to s...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2014.09.022

    authors: Commisso MS,Martínez-Reina J,Ojeda J,Mayo J

    更新日期:2015-01-01 00:00:00

  • Adhesion failure behavior of sputtered calcium phosphate thin film coatings evaluated using microscratch testing.

    abstract::It is generally accepted that calcium phosphate (CaP) is one of the most important biomaterials in implant coating applications mainly because of its excellent bioactivity. However, its relatively poor mechanical properties limits its application. This entails that a better understanding of the mechanical properties o...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2010.01.002

    authors: Toque JA,Herliansyah MK,Hamdi M,Ide-Ektessabi A,Sopyan I

    更新日期:2010-05-01 00:00:00

  • Mechanical properties and thermal behaviour of PEGDMA hydrogels for potential bone regeneration application.

    abstract::Poly(ethylene glycol) hydrogels are currently under investigation as possible scaffold materials for bone regeneration. The main purpose of this research was to analyse the mechanical properties and thermal behaviour of novel photopolymerised poly(ethylene glycol) dimethacrylate (PEGDMA) based hydrogels. The effect of...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.04.004

    authors: Killion JA,Geever LM,Devine DM,Kennedy JE,Higginbotham CL

    更新日期:2011-10-01 00:00:00

  • Nonlinear quasi-static finite element simulations predict in vitro strength of human proximal femora assessed in a dynamic sideways fall setup.

    abstract::Osteoporotic proximal femur fractures are caused by low energy trauma, typically when falling on the hip from standing height. Finite element simulations, widely used to predict the fracture load of femora in fall, usually include neither mass-related inertial effects, nor the viscous part of bone׳s material behavior....

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.11.026

    authors: Varga P,Schwiedrzik J,Zysset PK,Fliri-Hofmann L,Widmer D,Gueorguiev B,Blauth M,Windolf M

    更新日期:2016-04-01 00:00:00

  • Mechanical and microstructural properties of ultra-translucent dental zirconia ceramic stabilized with 5 mol% yttria.

    abstract::Monolithic dental prostheses fabricated from 3 mol.% yttria-stabilized zirconia (3YZ) are becoming increasingly popular. Recently, 5 mol.% yttria-stabilized zirconia (5YZ) which significantly improves the translucency of 3YZ has been prepared. However, its mechanical and microstructural properties, especially those af...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.103974

    authors: Harada A,Shishido S,Barkarmo S,Inagaki R,Kanno T,Örtengren U,Egusa H,Nakamura K

    更新日期:2020-11-01 00:00:00

  • Calibration of colloidal probes with atomic force microscopy for micromechanical assessment.

    abstract::Mechanical assessment of biological materials and tissue-engineered scaffolds is increasingly focusing at lower length scale levels. Amongst other techniques, atomic force microscopy (AFM) has gained popularity as an instrument to interrogate material properties, such as the indentation modulus, at the microscale via ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.05.026

    authors: Kain L,Andriotis OG,Gruber P,Frank M,Markovic M,Grech D,Nedelkovski V,Stolz M,Ovsianikov A,Thurner PJ

    更新日期:2018-09-01 00:00:00

  • On the mechanical characterization and modeling of polymer gel brain substitute under dynamic rotational loading.

    abstract::The use of highly sensitive soft materials has become increasingly apparent in the last few years in numerous industrial fields, due to their viscous and damping nature. Unfortunately these materials remain difficult to characterize using conventional techniques, mainly because of the very low internal forces supporte...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.06.008

    authors: Fontenier B,Hault-Dubrulle A,Drazetic P,Fontaine C,Naceur H

    更新日期:2016-10-01 00:00:00

  • Layer-specific residual deformations and uniaxial and biaxial mechanical properties of thoracic porcine aorta.

    abstract::In this paper we hypothesize that the layer-separated residual stresses and mechanical properties of layer-separated thoracic aorta arteries may be dependent on arterial location of the vessel. To demonstrate any possible position differences, we measured the axial pre-stretch and opening angle and performed uniaxial ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.05.024

    authors: Peña JA,Martínez MA,Peña E

    更新日期:2015-10-01 00:00:00

  • Measurement of the shear modulus in thin-layered tissues using numerical simulations and shear wave elastography.

    abstract::Measurement of mechanical properties of thin-layered tissues has broad applications in the diagnosis of several pathologies. Ultrasound shear wave elastography (SWE) measures the shear wave speed as a means of estimating the mechanical properties of tissues. However, the wave speed in thin-layered tissues is affected ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.103502

    authors: Sadeghi S,Cortes DH

    更新日期:2020-02-01 00:00:00

  • Fracture mechanics of hydroxyapatite single crystals under geometric confinement.

    abstract::Geometric confinement to the nanoscale, a concept that refers to the characteristic dimensions of structural features of materials at this length scale, has been shown to control the mechanical behavior of many biological materials or their building blocks, and such effects have also been suggested to play a crucial r...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2012.12.005

    authors: Libonati F,Nair AK,Vergani L,Buehler MJ

    更新日期:2013-04-01 00:00:00

  • Evaluation of the mechanical properties of powder metallurgy Ti-6Al-7Nb alloy.

    abstract::Titanium and its alloys are common biomedical materials owing to their combination of mechanical properties, corrosion resistance and biocompatibility. Powder metallurgy (PM) techniques can be used to fabricate biomaterials with tailored properties because changing the processing parameters, such as the sintering temp...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.12.005

    authors: Bolzoni L,Ruiz-Navas EM,Gordo E

    更新日期:2017-03-01 00:00:00

  • Clinical versus pre-clinical FE models for vertebral body strength predictions.

    abstract::The finite element analysis is an accepted method to predict vertebral body compressive strength. This study compares measurements obtained from in vitro tests with the ones from two different simulation models: clinical quantitative computer tomography (QCT) based homogenized finite element (hFE) models and pre-clini...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2012.11.018

    authors: Pahr DH,Schwiedrzik J,Dall'Ara E,Zysset PK

    更新日期:2014-05-01 00:00:00

  • Apparent behaviour of charged and neutral materials with ellipsoidal fibre distributions and cross-validation of finite element implementations.

    abstract::Continuous fibre distribution models can be applied to a variety of biological tissues with both charged and neutral extracellular matrices. In particular, ellipsoidal models have been used to describe the complex material behaviour of tissues such as articular cartilage and their engineered tissue equivalents. The ch...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2012.01.006

    authors: Nagel T,Kelly DJ

    更新日期:2012-05-01 00:00:00

  • Design of a remote-control drug delivery implantable chip for cancer local on demand therapy using ionic polymer metal composite actuator.

    abstract::Since the local, on demand, cancer therapy is a challenging clinical issue today, this paper presents the design, fabrication and characterization of a remotely controlled single reservoir drug delivery chip using Ionic Polymer Metal Composite (IPMC) actuator. Here, Drug release was externally programmed and controlle...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.06.034

    authors: Saneei Mousavi MS,Karami AH,Ghasemnejad M,Kolahdouz M,Manteghi F,Ataei F

    更新日期:2018-10-01 00:00:00

  • Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting.

    abstract::Total knee replacement implants consisting of a Co-29Cr-6Mo alloy femoral component and a Ti-6Al-4V tibial component are the basis for the additive manufacturing of novel solid, mesh, and foam monoliths using electron beam melting (EBM). Ti-6Al-4V solid prototype microstructures were primarily α-phase acicular platele...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.05.010

    authors: Murr LE,Amato KN,Li SJ,Tian YX,Cheng XY,Gaytan SM,Martinez E,Shindo PW,Medina F,Wicker RB

    更新日期:2011-10-01 00:00:00

  • Mechanical properties, electrochemical corrosion and in-vitro bioactivity of yttria stabilized zirconia reinforced hydroxyapatite coatings prepared by gas tunnel type plasma spraying.

    abstract::Yttria stabilized zirconia reinforced hydroxyapatite coatings were deposited by a gas tunnel type plasma spray torch under optimum spraying conditions. For this purpose, 10, 20 and 30 wt% of yttria stabilized zirconia (YSZ) powders were premixed individually with hydroxyapatite (HA) powder and were used as the feedsto...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.11.002

    authors: Yugeswaran S,Yoganand CP,Kobayashi A,Paraskevopoulos KM,Subramanian B

    更新日期:2012-05-01 00:00:00

  • Friction of F-actin knots.

    abstract::We use the existing data of force-extension experiments on F-actin molecules tied into knots to compute a value of 0.15 for the static friction coefficient for contact between different parts of the same molecule with itself. This estimate for protein-protein friction is relevant for the stabilization of the 273 known...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2009.08.005

    authors: Kirchner HO,Neukirch S

    更新日期:2010-01-01 00:00:00

  • Enhancement of the mechanical properties of AZ31 magnesium alloy via nanostructured hydroxyapatite thin films fabricated via radio-frequency magnetron sputtering.

    abstract::The structure, composition and morphology of a radio-frequency (RF) magnetron sputter-deposited dense nano-hydroxyapatite (HA) coating that was deposited on the surface of an AZ31 magnesium alloy were characterized using AFM, SEM, EDX and XRD. The results obtained from SEM and XRD experiments revealed that the bias ap...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.02.025

    authors: Surmeneva MA,Tyurin AI,Mukhametkaliyev TM,Pirozhkova TS,Shuvarin IA,Syrtanov MS,Surmenev RA

    更新日期:2015-06-01 00:00:00

  • A tribo-mechanical analysis of PVA-based building-blocks for implementation in a 2-layered skin model.

    abstract::Poly(vinyl) alcohol hydrogel (PVA) is a well-known polymer widely used in the medical field due to its biocompatibility properties and easy manufacturing. In this work, the tribo-mechanical properties of PVA-based blocks are studied to evaluate their suitability as a part of a structure simulating the length scale dep...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.05.001

    authors: Morales Hurtado M,de Vries EG,Zeng X,van der Heide E

    更新日期:2016-09-01 00:00:00

  • Surface protection in bio-shields via a functional soft skin layer: Lessons from the turtle shell.

    abstract::The turtle shell is a functional bio-shielding element, which has evolved naturally to provide protection against predator attacks that involve biting and clawing. The near-surface architecture of the turtle shell includes a soft bi-layer skin coating - rather than a hard exterior - which functions as a first line of ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.01.019

    authors: Shelef Y,Bar-On B

    更新日期:2017-09-01 00:00:00

  • Mechano-rheological properties of the murine thrombus determined via nanoindentation and finite element modeling.

    abstract::Deep vein thrombosis, pulmonary embolism, and abdominal aortic aneurysms are blood-related diseases that represent a major public health problem. These diseases are characterized by the formation of a thrombus (i.e., blood clot) that either blocks a major artery or causes an aortic rupture. Identifying the mechanical ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2012.02.012

    authors: Slaboch CL,Alber MS,Rosen ED,Ovaert TC

    更新日期:2012-06-01 00:00:00

  • Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope.

    abstract::The elastic modulus of an oral cancer cell line UM1 is investigated by nanoindentation in an atomic force microscope with a flat-ended tip. The commonly used Hertzian method gives apparent elastic modulus which increases with the loading rate, indicating strong effects of viscoelasticity. On the contrary, a rate-jump ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.11.010

    authors: Zhou ZL,Ngan AH,Tang B,Wang AX

    更新日期:2012-04-01 00:00:00

  • A projection method to extract biological membrane models from 3D material models.

    abstract::This paper presents a projection method for deriving membrane models from the corresponding three-dimensional material models. As a particular example the anisotropic Holzapfel-Gasser-Ogden model is considered. The projection procedure is based on the kinematical and constitutive assumptions of a general membrane theo...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.09.001

    authors: Roohbakhshan F,Duong TX,Sauer RA

    更新日期:2016-05-01 00:00:00

  • Measurement of viscoelastic properties in multiple anatomical regions of acute rat brain tissue slices.

    abstract::Mechanical property data for brain tissue are needed to understand the biomechanics of neurological disorders and response of the brain to different mechanical and surgical forces. Most studies have characterized mechanical behavior of brain tissues over large regions or classified tissue properties for either gray or...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.08.026

    authors: Lee SJ,King MA,Sun J,Xie HK,Subhash G,Sarntinoranont M

    更新日期:2014-01-01 00:00:00

  • Imprecise knowledge based design and development of titanium alloys for prosthetic applications.

    abstract::Imprecise knowledge on the composition-processing-microstructure-property correlation of titanium alloys combined with experimental data are used for developing rule based models for predicting the strength and elastic modulus of titanium alloys. The developed models are used for designing alloys suitable for orthoped...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.08.039

    authors: Datta S,Mahfouf M,Zhang Q,Chattopadhyay PP,Sultana N

    更新日期:2016-01-01 00:00:00

  • Viscoelastic parameter identification of human brain tissue.

    abstract::Understanding the constitutive behavior of the human brain is critical to interpret the physical environment during neurodevelopment, neurosurgery, and neurodegeneration. A wide variety of constitutive models has been proposed to characterize the brain at different temporal and spatial scales. Yet, their model paramet...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.07.014

    authors: Budday S,Sommer G,Holzapfel GA,Steinmann P,Kuhl E

    更新日期:2017-10-01 00:00:00

  • Two-piece zirconia oral implants withstand masticatory loads: An investigation in the artificial mouth.

    abstract:OBJECTIVE:To evaluate the fracture resistance of two-piece zirconia oral implants after long-term thermomechanical cycling in an aqueous environment. Non-loaded samples and a one-piece implant system served as control groups. METHODS:A total of 48 zirconia implants were evaluated: 16 one-piece implants (ATZ; Group A) ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.07.005

    authors: Spies BC,Nold J,Vach K,Kohal RJ

    更新日期:2016-01-01 00:00:00

  • Statistics in experimental studies on the human spine: Theoretical basics and review of applications.

    abstract::Proper statistical analysis is essential in the research studies. In particular, as regards the in vitro testing of the lumbar spine, the criteria for the standardization have been extensively discussed but the use of statistics has not been reviewed. Unfortunately, cadaveric testing is a very difficult and complex ex...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.103862

    authors: Bassani T,Galbusera F

    更新日期:2020-10-01 00:00:00